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Abstract—Spotforming is a target-speaker extraction technique
that uses multiple microphone arrays. This method applies
beamforming (BF) to each microphone array, and the common
components among the BF outputs are estimated as the target
source. This study proposes a new common component extrac-
tion method based on nonnegative tensor factorization (NTF)
for higher model interpretability and more robust spotforming
against hyperparameters. Moreover, attractor-based regulariza-
tion was introduced to facilitate the automatic selection of optimal
target bases in the NTF. Experimental results show that the
proposed method performs better than conventional methods in
spotforming performance and also shows some characteristics
suitable for practical use.

Index Terms—Microphone arrays, beamforming, nonnegative
matrix/tensor factorization, attractor-based regularization

I. INTRODUCTION

Target speaker extraction extracts only the target source
from the observed signal. This technique can be applied to
front-end systems in various audio applications, including
automatic speech recognition.

Beamforming (BF) [1] is the most common approach for
target speaker extraction when using a microphone array.
Because BF emphasizes all source signals present in a specific
direction from the microphone array, interference sources in
the same direction cannot be suppressed. Spotforming [2] using
multiple microphone arrays was proposed to solve this prob-
lem. Spotforming aims to extract only the target source from
a specific area, as shown in Fig. 1. A spatial spotforming filter
using all synchronized microphone arrays was proposed [2].
In addition, the optimal arrangement of multiple microphone
arrays for spotforming was investigated [3].

As another effective approach, spotforming utilizing non-
negative matrix factorization (NMF) [4] has been proposed [5].
This method emphasizes the target directions using each
microphone array with a BF. Then, it applies NMF [4] to
the BF outputs concatenated in the time-frame dimension, as
shown in Fig. 2 (a). The target source is estimated as the
common component extracted from the NMF decomposition
results using a binary mask obtained by thresholding the
activation matrix. However, this decomposition lacks model
interpretability because of the absence of explicit modeling of
the relationship between each basis vector and each of the BF
outputs, making it difficult to introduce effective regulariza-
tion to enhance discriminative basis learning. Moreover, the
performance depends on the setting of the hyperparameters,
including the number of basis vectors and the threshold value

Fig. 1. Situations and signals estimated by two BF filters.

Fig. 2. Decomposition models of (a) NMF in the conventional method and
(b) NTF in the proposed method.

for extraction of common components. These hyperparameters
must be tuned in advance based on the observed signal
characteristics, such as the signal length and time-frequency
structures of the target and interference sources.

In this study, we propose a new spotforming method that
has higher model interpretability and achieves more robust
spotforming against hyperparameters. To this end achieve, we
utilize nonnegative tensor factorization (NTF) [6] for common
component extraction, as shown in Fig. 2 (b). An allocation
matrix is introduced to represent the basis vectors corre-
sponding to the target source components, resulting in higher
model interpretability. In addition, this approach enables the
incorporation of attractor-based regularization to simultane-
ously facilitate discriminative basis learning and automatic
optimization of the number of basis vectors for each source.
While our proposed method involves two hyperparameters,
the number of basis vectors and the weight coefficient of
the regularizer, the spotforming performance is shown to be
relatively robust to variations in these values.
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II. SPOTFORMING USING MULTIPLE MICROPHONE
ARRAYS

A. Scenario of Spotforming and Its Signal Model

In this study, we consider the scenario depicted in Fig. 1.
The target and interference sources are located in the same
direction relative to each microphone array. Although the BF
in each microphone array can enhance the target source, the
interference sources in the same direction are also enhanced.
However, because the residual interference sources are differ-
ent for each BF output, estimation of the target source becomes
feasible by extracting only the common components among
the BF output signals.

Let X(a) ∈ CI×J×M denote the time-frequency compo-
nents of the multichannel observed signal captured by a-th
microphone array, with its elements defined as x

(a)
i,j,m, where

i = 0, 1, · · · , I − 1, j = 0, 1, · · · , J − 1, a = 0, 1, · · · , A− 1,
and m = 0, 1, · · · ,M − 1 are the indices of frequency bins,
time frames, microphone arrays, and microphones within each
array, respectively. In spotforming using distributed micro-
phone arrays, BF is initially applied within each microphone
array as Y (a) = fθa(X

(a)), where Y (a) ∈ CI×J represents the
output spectrogram of the BF operation and θa denotes a spe-
cific look direction. We also define the tensor for (Y (a))A−1

a=0 as
Y ∈ CI×J×A, with its elements denoted as y(a)i,j . The objective
of spotforming is to estimate the components of the target
source from Y that correspond to the common components of
the BF outputs (Y (a))A−1

a=0 .

B. Conventional NMF-Based Spotforming

In the conventional method [5], NMF extracts common
components. Let C(conv) ∈ RI×N

≥0 denote an input ma-
trix of NMF, with its elements defined as c

(conv)
i,n , where

n = 0, 1, · · · , N − 1 is the index of columns. This ma-
trix is constructed by concatenating the amplitude spectro-
grams (|Y (a)|)A−1

a=0 in the time-frame dimension, as shown
in Fig. 2 (a), namely,

c
(conv)
i,n := c

(conv)
i,aJ+j =

∣∣∣y(a)i,j

∣∣∣ , (1)

where | · | for matrices denotes an element-wise absolute
operation and N = AJ . Matrix C(conv) is decomposed using
NMF as follows:

C(conv) ≈ T Ṽ T (c
(conv)
i,n ≈

∑
k ti,kṽn,k), (2)

where T ∈ {T ∈ [0, 1]I×K |
∑

i ti,k = 1} and Ṽ ∈ RN×K
≥0

are the basis and activation matrices, respectively, and k =
0, 1, · · · ,K − 1 is the index of NMF basis vectors. The
optimization problem of (2) is defined as follows:

minimize
T ,Ṽ

∑
i,nD

(
c
(conv)
i,n |

∑
k ti,kṽn,k

)
s.t. ti,k, ṽn,k ≥ 0 ∀i, k, n, (3)

where D is a divergence function.

After the estimation of T and Ṽ , a binary mask matrix
H̃ ∈ {0, 1}J×K is calculated as

h̃j,k =

{
1 (if ṽaJ+j,k > τ ∀a)
0 (otherwise)

, (4)

where h̃j,k is an element of H̃ and τ ≥ 0 is a threshold-
ing value. This binary mask defines the component with an
activation greater than τ in all the microphone arrays as the
common target source component and sets it to unity.

The spectrogram of the target source Ŝ(a) ∈ CI×J can be
estimated by a Wiener filter using the binary mask H̃ as1

ŝ
(a)
i,j =

∑
k (ti,kh̃j,kṽaJ+j,k)

2∑
k (ti,kṽaJ+j,k)

2 y
(a)
i,j , (5)

where ŝ
(a)
i,j is the (i, j)-th element of Ŝ(a). To obtain the time

domain signals ŝ(a) ∈ RL, an inverse short-time Fourier trans-
form (STFT) is applied to Ŝ(a), where L is the signal length
of ŝ(a). Finally, a delay-and-sum operation using (ŝ(a))A−1

a=0 is
performed for further enhancement of the target source signal.

III. PROPOSED METHOD

A. Motivations

The NMF model in Fig. 2 (a) lacks model interpretability
because of the absence of explicit modeling of the relationship
between each basis vector in T and each of the BF outputs
(Y (a))A−1

a=0 . Consequently, it is difficult to regularize T or V
to enhance discrimination between the target and interference
source components. Moreover, the hyperparameters K and
τ must be appropriately tuned depending on the observed
signal in advance, which increases the difficulty of putting
the conventional method into practical use.

To address these shortcomings, we propose a novel spot-
forming method that utilizes an NTF to model the spectro-
grams of the BF outputs (Fig. 2 (b)). The proposed method
allocates K basis vectors in T to each microphone array
using an allocation matrix Z. Furthermore, we introduce an
attractor-based regularization into Z to allocate each basis
vector automatically assign/allocate to the corresponding BF
outputs. This significantly increases the interpretability of
the model and makes basis vectors more discriminative than
the conventional method. This regularization automatically
optimizes the number of basis vectors for the target source, re-
sulting in robust spotforming against hyperparameter settings.

B. NTF-Based Spotforming

In the proposed method, the input tensor C(prop) ∈ RA×I×J
≥0

of the NTF is defined as follows (Fig. 2 (b)):

c
(prop)
a,i,j :=

∣∣∣y(a)i,j

∣∣∣ , (6)

where c
(prop)
a,i,j is an element of C(prop). In contrast to (1),

the three-dimensional tensor C(prop) maintains the physical

1The method proposed in [5] does not apply (5), but directly uses the
estimated NMF model for obtaining ŝ(a) with a phase recovery technique.
Since (5) slightly improves the performance, we employ (5) in this paper.
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dimensions of the microphone array, frequency bins, and
time frames. Then, C(prop) is decomposed into three matri-
ces, i.e., the allocation matrix Z = [z0, z1, · · · , zK−1] ∈
{Z ∈ [0, 1]A×K |

∑
a za,k = 1}, the basis matrix T =

[t0, t1, · · · , tK−1], and the activation matrix V ∈ RJ×K
≥0 , as

c
(prop)
a,i,j ≈

∑
k za,kti,kvj,k, (7)

where za,k and vj,k are the elements of Z and V , respectively,
and zk and tk are the column vectors of Z and T , respectively.

Matrix Z allocates K basis vectors to A microphone
arrays to approximate input tensor C(prop). Because the target
source components are commonly included across all BF
outputs (|Y (a)|)A−1

a=0 , such basis vectors should be allocated
to all microphone arrays. Therefore, if tk represents the target
source, zk should be zk ≈ [1/A, 1/A, · · · , 1/A]T. In contrast,
if tk corresponds to the other (interference) sources, zk should
be a one-hot vector. This allocation can be interpreted as
a partitional clustering of the basis vectors. Although such
optimization can be facilitated by (7) and the low-rank ap-
proximation property in NTF, we introduce a new attractor-
based regularization to enhance the aforementioned partitional
clustering further.

The optimization problem of the proposed method is for-
mulated as follows:

minimize
Z,T ,V

∑
a,i,jD

(
c
(prop)
a,i,j |

∑
kza,kti,kvj,k

)
+µ

∑
kR(pbk |zk)

s.t. za,k, ti,k, vi,k,≥ 0 ∀a, i, j, k, (8)

where µ ≥ 0 is the weight coefficient, and the regularization
term is defined as

R (pbk |zk) =
∑

aD(pa,bk |za,k), (9)
P = {p0,p1, · · · ,pB−1} , (10)

p0 := [1/A, 1/A, · · · , 1/A]T ∈ {1/A}A,
p1 := [1, 0, · · · , 0]T ∈ {0, 1}A,
p2 := [0, 1, · · · , 0]T ∈ {0, 1}A,

...

pB−1 := [0, 0, · · · , 1]T ∈ {0, 1}A,
bk ∈ argmin

b

∑
aD(pa,b|za,k). (11)

Also, pa,b is an element of pb, b = 0, 1, · · · , B − 1 is the
index of attractor vectors (p0,p1, · · · ,pB−1), and B = A+1.
The set P encompasses B attractor vectors for each class; p0

corresponds to the target-source class, while p1,p2, · · · ,pB−1

correspond to the other interference-source classes related to
each microphone array. bk calculated by (11) corresponds to
the index of the nearest attractor vector (class) from the current
allocation vector zk. Thus, the regularization term in (9) forces
zk to be closer to the nearest attractor vector, pbk , emphasizing
source clustering of the basis vectors (tk)

K−1
k=0 . This can

further affect the basis matrix, resulting in more discriminative
basis vectors. In addition, this regularization automatically
classifies K basis vectors into target and interference sources.

Consequently, the optimal number of basis vectors for the
target source is estimated jointly during the optimization.

After the optimization of Z, T , and V , a binary vector
h = [h0, h1, · · · , hK−1]

T ∈ {0, 1}K is calculated as follows:

hk =

{
1 (if bk = 0)

0 (otherwise)
, (12)

where hk = 1 indicates that tk corresponds to the target
source. In contrast to (4), (12) is independent of the time frame
j.

Similar to (5), the spectrogram of the target source is
obtained using the following Wiener filter:

ŝ
(a)
i,j =

∑
k (hkza,kti,kvj,k)

2∑
k(za,kti,kvj,k)

2 y
(a)
i,j . (13)

The other post-processing steps are the same as those used in
the conventional method.

C. Derivation of Update Rules

The cost function in (8) can be minimized using a
majorization-minimization (MM) algorithm [7]. In this study,
we use a generalized Kullback–Leibler divergence

D(b|a) = b log
b

a
+ a− b (14)

in (3), (8), and (11), which provides better performance in
many audio source separation tasks, e.g., [8]. We define the
cost function in (8) as J . By applying Jensen’s inequality, we
obtain the majorization function J + ≥ J as follows:

J + c
=

∑
a,i,j

(
−c(prop)a,i,j

∑
k αa,i,j,k log

za,kti,kvj,k
αa,i,j,k

+
∑

k za,kti,kvj,k) + µ
∑

a,k (−pa,bk log za,k + za,k) ,

(15)

where c
= denotes equality up to a constant and αa,i,j,k > 0

is an auxiliary variable that satisfies
∑

k αa,i,j,k = 1. The
equality J + = J holds if and only if

αa,i,j,k =
za,kti,kvj,k∑
k′ za,k′ti,k′zj,k′

. (16)

From ∂J +/∂za,k = 0, we obtain∑
i,j

(
−c(prop)a,i,j

αa,i,j,k

za,k
+ ti,kvj,k

)
+ µ

(
−pa,bk

za,k
+ 1

)
= 0.

Thus,

za,k =

∑
i,j c

(prop)
a,i,j αa,i,j,k + µpa,bk∑

i,j ti,kvj,k + µ
. (17)

By substituting (16) into (17), we obtain the update rule for
Z as

za,k ←
za,k

∑
i,j c

(prop)
a,i,j

ti,kvj,k∑
k′ za,k′ti,k′vj,k′

+ µpa,bk∑
i,j ti,kvj,k + µ

. (18)
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Note that index bk must always be updated by (11) before
updating Z. Similar to (18), the update rules for T and V
can be derived as follows:

ti,k ← ti,k

∑
a,j c

(prop)
a,i,j

za,kvj,k∑
k′ za,k′ti,k′vj,k′∑

a,j za,kvj,k
, (19)

vj,k ← vj,k

∑
a,i c

(prop)
a,i,j

za,kti,k∑
k′ za,k′ti,k′vj,k′∑

a,i za,kti,k
. (20)

To ensure
∑

a za,k = 1 and
∑

i ti,k = 1, we apply the
normalization of zk and tk after (18) and (19), respectively,
such that the cost function does not change by scaling each
column of V .

For the convergence of the proposed optimization algorithm,
we can state the following theorem. This ensures a theoretical
nonincrease in the cost function in the proposed method.

Theorem 1. The update rules (11), (18)–(20) ensure the
monotonic nonincrease of the cost function in (8).

Proof. Based on the MM algorithm, update rules (18)–(20)
ensure a monotonic nonincrease of the cost function in (8).
Thus, the monotonic nonincrease of the entire algorithm
(11), (18)–(20) depends on whether (11) has a monotonic
nonincrease property. Let b(old)k and b

(new)
k represent the old

and updated indices, respectively. As bk is updated such
that

∑
aD(pa,bk |za,k) is minimized in (11), the following

inequality holds:

R(p
b
(old)
k

|zk) =
∑
a

D(p
a,b

(old)
k

|za,k)

≥
∑
a

D(p
a,b

(new)
k

|za,k)

= R(p
b
(new)
k

|zk) ∀k. (21)

Therefore, the update rule (11) does not increase the value of
the cost function in (8).

IV. EXPERIMENT

A. Conditions

A spotforming experiment was conducted to validate the
proposed method. To simulate the recording environment
illustrated in Fig. 3, we used a two-dimensional image
method implemented in Pyroomacoustics [9]. We simulated
two reverberation times for each environment, T60 = 0 and
T60 = 256 ms, resulting in four recording conditions. The
speech signals listed in Table I, randomly selected from the
LibriTTS [10] dataset, were used as the dry sources. These
dry sources were normalized to have uniform signal energies
before the room impulse responses were convoluted. The effect
of background noise was not considered in this experiment.

We applied a minimum variance distortionless response
(MVDR) BF to each observed signal X(a) of the microphone
array and obtained enhanced signals (Y (a))A−1

a=0 . The target
steering vectors and noise covariance matrices for each MVDR
BF were set to their oracle values calculated from impulse

(a) (b)

Fig. 3. Recording environments simulated by the two-dimensional image
method: (a) two-microphone-array and (b) three-microphone-array cases. All
the microphone spacing in each array is set to 2.83 cm.

TABLE I
DRY SOURCES

File name Source
84_121123_000008_000002.wav Target
652_130737_000012_000000.wav Interf. 0
3000_15664_000020_000005.wav Interf. 1
1272_141231_000024_000005.wav Interf. 2

responses. This condition simulated that BF preprocessing
provides ideal performance, and the net performances of
the conventional and proposed methods were compared. All
microphones were synchronized in this experiment.

As an evaluation criterion, we used the source-to-distortion
ratio (SDR) [11] of the target source, a common score re-
flecting the total source separation quality. Because the NMF
and NTF results depend on the initial random values of the
parameters, we used 10 random seeds. We calculated the
average SDR scores and their standard deviations. The other
conditions are listed in Table II.

B. Results and Discussion

Figs. 4 and 5 show the results of two- and three-microphone-
array cases, respectively. The hyperparameter τ for the conven-
tional method was set to 12 patterns, and the three better con-
ditions were shown in Figs. 4 and 5. These results confirm that
the proposed method outperforms the conventional method in
all cases. Moreover, the proposed method maintained better
performance when K increased, while the performance of the
conventional method degraded for a large value of K in some
conditions of τ .

The hyperparameter µ in the proposed method also affected
the performance. Fig. 6 shows the performance behavior of the
proposed method with various settings of µ. The proposed
method achieved optimal performance when we set µ to
a certain large value, e.g., µ ≥ 100. Strong regularization
with (9) results in a hard classification of the basis vectors
(tk)

K−1
k=0 , namely, each allocation vector zk coincides with

one of the attractor vectors (pb)
B−1
b=0 . This phenomenon was

consistently confirmed under other values of K and T60.
Thus, such optimization tends to provide a better spotforming
performance for the proposed method. Thanks to this property,
we can robustly obtain better results by using a certain large
value of µ and K.
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(a) (b)

Fig. 4. SDR scores with various K in the two-microphone-array case: (a) T60 = 0 ms and (b) T60 = 256 ms. The plots and colored areas show the average
values and standard deviations. Average SDRs of simple BF outputs Y (0) and Y (1) were 9.4 dB in (a) and 6.7 dB in (b).

(a) (b)

Fig. 5. SDR scores with various K in the three-microphone-array case: (a) T60 = 0 ms and (b) T60 = 256 ms. The plots and colored areas show the
average values and standard deviations. Average SDRs of simple BF outputs Y (0), Y (1), and Y (2) were 7.1 dB in (a) and 4.1 dB in (b).

TABLE II
EXPERIMENTAL CONDITIONS

Sampling frequency Down sampled to 16 kHz
Window function used in STFT Hann window
Window length in STFT 32 ms
Window shift length in STFT 16 ms
Number of iterations in NMF/NTF 100 times
Initial values of T , Ṽ , and V Uniform random values in the range (0, 1)

Initial values of Z All the elements are set to 1/A

Weight coefficient µ µ = 0 for first 50 iterations, and
µ > 0 for the rest of iterations

V. CONCLUSION

This study has proposed a new spotforming algorithm that
unifies NTF and attractor-based regularization. The regular-
ization term is designed based on the partitional clustering of
the NTF basis vectors into target and interference sources. The
experimental results revealed that the proposed method outper-
formed the conventional NMF-based spotforming technique.

REFERENCES

[1] M. Brandstein and D. Ward, Microphone Arrays: Signal Processing Techniques
and Applications. Springer-Verlag Berlin Heidelberg New York, 2001.

[2] M. Taseska and E. A. P. Habets, “Spotforming: spatial filtering with distributed
arrays for position-selective sound acquisition,” IEEE/ACM Trans. Audio, Speech,
Lang. Process., vol. 24, no. 7, pp. 1291–1304, 2016.

[3] K. Sekiguchi, Y. Bando, K. Itoyama, and K. Yoshii, “Layout optimization of
cooperative distributed microphone arrays based on estimation of source separation
performance,” J. Robotics and Mechatronics, vol. 29, no. 1, pp. 83–93, 2017.

[4] D. D. Lee and H. S. Seung, “Learning the parts of objects by non-negative matrix
factorization,” Nature, vol. 401, no. 6755, pp. 788–791, 1999.

10!5 100 105

Weight coe/cient 7

10

11

12

13

14

15

S
D

R
[d

B
]

Average
Standard deviation

(a)

10!5 100 105

Weight coe/cient 7

7.5

8

8.5

9

9.5

S
D

R
[d

B
]

Average
Standard deviation

(b)
Fig. 6. SDR values of the proposed method for various weight coefficient µ
in the two-microphone-array case: (a) T60 = 0 ms and (b) T60 = 256 ms,
where K = 100.

[5] Y. Kagimoto, K. Itoyama, K. Nishida, and K. Nakadai, “Spotforming by NMF
using multiple microphone arrays,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots
Syst., pp. 9253–9258, 2022.

[6] A. Cichocki, R. Zdunek, S. Choi, R. Plemmons, and S. Amari, “Novel multi-layer
non-negative tensor factorization with sparsity constraints,” in Proc. Int. Conf.
Adaptive and Natural Comput. Algorithms, pp. 271–280, 2007.

[7] D. R. Hunter and K. Lange, “Quantile regression via an MM algorithm,” J. Comput.
Graph. Stat., vol. 9, no. 1, pp. 60–77, 2000.

[8] D. Kitamura, H. Saruwatari, K. Yagi, K. Shikano, Y. Takahashi, and K. Kondo,
“Music signal separation based on supervised nonnegative matrix factorization with
orthogonality and maximum-divergence penalties,” IEICE Trans. Fundamentals
Electron. Commun. Comput. Sci., vol. E97-A, no. 5, pp. 1113–1118, 2014.

[9] R. Scheibler, E. Bezzam, and I. Dokmanić, “Pyroomacoustics: a Python package
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