解像度の異なる複数の時間周波数表現を用いた独立低ランク行列分析* ☆細谷泰稚,北村大地 (香川高専),矢田部浩平 (早稲田大)

1 はじめに

ブラインド音源分離(blind source separation: BSS)[1]は,混合系や音源情報が未知の条件下で, 複数の音源が混合した観測信号から混合前の各音源 信号を推定する技術である.BSSは補聴器や自動採 譜,音声認識等の様々な技術に応用されている.

チャネル数が音源数以上となる観測信号を扱う優決 定条件 BSS は、周波数領域独立成分分析(frequencydomain independent component analysis: FDICA) [2] 及び周波数毎の分離信号の順番を適切に並び替える パーミュテーション問題の解決法が基礎技術となる[3]. 2006 年に, FDICA に対して音源の時間周波数構造 仮定を導入し、パーミュテーション問題を回避しつつ 分離信号を推定する独立ベクトル分析(independent vector analysis: IVA) [4] が登場した. その後,補助 関数法 [5] 及び反復射影法(iterative projection: IP) [6] に基づく安定かつ高速な IVA [7] が提案されてい る. 2016年には、非負値行列因子分解 (nonnegative matrix factorization: NMF) [8] に基づく低ランク時 間周波数構造を音源モデルに取り入れた独立低ラン ク行列分析 (independent low-rank matrix analysis: ILRMA) [9, 10, 1] が提案された.また,音源モデル を plug-and-play で変更可能な BSS [11] も提案され ている. さらに、時間周波数領域におけるスペクトロ グラム無矛盾性 [12] と呼ばれる性質を FDICA 及び IVA に導入した BSS [13] や ILRMA に導入した BSS (consistent ILRMA) [14] も提案されている.

ILRMA の最適化は、時間周波数領域における空間 モデル(周波数毎の分離行列)の更新と音源モデル (NMF による低ランク時間周波数構造)の更新から なる.信号の時間周波数表現は短時間フーリエ変換 (short-time Fourier transform: STFT)によって得 られるが、過去の実験的な調査[15]より、ILRMA の 分離性能はSTFT の窓長に強く依存することが分かっ ている.具体的には、STFT の窓長が短すぎる場合、 周波数領域での瞬時混合仮定が成立せず性能が劣化 [16]し、逆に窓長が長すぎる場合、時間フレーム数 が減少し統計的推定が不安定となり性能が劣化する. 従って、STFT の窓長にはトレードオフが存在する.

本稿では、前述の STFT の窓長に関する傾向に基 づき、ILRMA の性能向上を目的として、空間モデル 及び音源モデルの最適化に異なる時間周波数表現を導 入したアルゴリズムを提案する.また,各モデルの最 適化で同一の時間周波数表現を用いる従来のILRMA が常に最良とは限らないことを実験的に示す.

2 提案手法

2.1 定式化と優決定条件 BSS

N 個の音源信号が M 個のマイクロホンで観測され る状況を考える.時間領域の多チャネルの音源信号, 観測信号,及び分離信号をそれぞれ次式で表す.な お,信号の時間領域及び時間周波数領域における二 つの表現の混同を避けるため,それぞれの領域での ベクトルをローマン体及びイタリック体で示す.

- $\mathbf{s}[l] = \begin{bmatrix} s_1[l], \dots, s_n[l], \dots, s_N[l] \end{bmatrix}^{\mathrm{T}} \in \mathbb{R}^N \quad (1)$
- $\mathbf{x}[l] = \begin{bmatrix} x_1[l], \dots, x_m[l], \dots, x_M[l] \end{bmatrix}^{\mathrm{T}} \in \mathbb{R}^M \quad (2)$
- $\mathbf{y}[l] = \begin{bmatrix} y_1[l], \dots, y_n[l], \dots, y_N[l] \end{bmatrix}^{\mathrm{T}} \in \mathbb{R}^N \quad (3)$

ここで, n = 1, 2, ..., N, m = 1, 2, ..., M, 及びl = 1, 2, ..., L はそれぞれ音源, チャネル, 及び離散時間 のインデクスであり, ·^T は転置を表す. また, 時間 領域の信号 $\mathbf{z} = [z[1], ..., z[l], ..., z[L]]^{T} \in \mathbb{R}^{L}$ の STFT を次式で表記する.

$$\boldsymbol{Z} = \mathrm{STFT}_{\boldsymbol{\omega}}(\mathbf{z}) \in \mathbb{C}^{I \times J}$$
(4)

ここで、 ω は解析時の窓関数を表す. 合成時の窓関数 を $\tilde{\omega}$ とおくとき、逆 STFT を ISTFT $_{\tilde{\omega}}(\cdot)$ と表記す る.本稿では、 $\omega \geq \tilde{\omega}$ のペアが次式の完全再構成条 件を満たすことを仮定する.

 $\mathbf{z} = \text{ISTFT}_{\widetilde{\boldsymbol{\omega}}}(\text{STFT}_{\boldsymbol{\omega}}(\mathbf{z})) \qquad \forall \mathbf{z} \in \mathbb{R}^L \qquad (5)$

各チャネルに STFT を適用して得られる音源信号, 観測信号,及び分離信号のスペクトログラムの (*i*, *j*) 番目の要素をそれぞれ次式で表す.

- $\boldsymbol{s}_{ij} = [s_{ij1}, \dots, s_{ijn}, \dots, s_{ijN}]^{\mathrm{T}} \qquad \in \mathbb{C}^{N} \qquad (6)$
- $\boldsymbol{x}_{ij} = [x_{ij1}, \dots, x_{ijm}, \dots, x_{ijM}]^{\mathrm{T}} \quad \in \mathbb{C}^{M} \quad (7)$
- $\boldsymbol{y}_{ij} = [y_{ij1}, \dots, y_{ijn}, \dots, y_{ijN}]^{\mathrm{T}} \qquad \in \mathbb{C}^{N} \qquad (8)$

ここで,i = 1, 2, ..., I及びj = 1, 2, ..., Jはそれぞ れ周波数ビン及び時間フレームのインデクスを表す. ILRMA を含む周波数領域 BSS では,次式で表され る周波数領域での瞬時混合を仮定する.

$$\boldsymbol{x}_{ij} = \boldsymbol{A}_i \boldsymbol{s}_{ij} \tag{9}$$

^{*} Independent low-rank matrix analysis using multiple time-frequency representations with different resolutions. by Taichi HOSOTANI, Daichi KITAMURA (NIT Kagawa), and Kohei YATABE (Waseda Univ.).

Fig. 1 Vocal spectrograms using (a) narrow (32 ms) and (b) wide (256 ms) windows.

ここで、 $A_i \in \mathbb{C}^{M \times N}$ は周波数毎の混合行列である. 優決定条件 BSS ではM = Nを仮定でき、BSS は A_i の逆行列を推定する問題となる.この逆行列を $W_i \approx A_i^{-1}$ とすると、分離信号は次式となる.

$$\boldsymbol{y}_{ij} = \boldsymbol{W}_i \boldsymbol{x}_{ij} \tag{10}$$

ここで、 $W_i = [w_{i1}, \ldots, w_{in}, \ldots, w_{iN}]^{\mathrm{H}} \in \mathbb{C}^{N \times M}$ は 分離行列と呼ばれ、·^Hはエルミート転置を表す.な お、観測信号及び分離信号については、時間周波数行 列の表記も $X_m \in \mathbb{C}^{I \times J}$ 及び $Y_n \in \mathbb{C}^{I \times J}$ と定義する.

2.2 動機

STFT における窓長が観測信号の残響時間より短 い場合、時間領域の残響による畳み込み混合を時間 周波数領域の瞬時混合に変換できず、式(9)の仮定が 成り立たないため,式(10)での高精度なBSSは原理 的に困難となる.そのため,STFT の窓長は残響時 間を十分超える長さ(例えば 256 ms 以上)に設定さ れることが一般的である.一方で,音声や楽器音等の 音響信号を時間周波数解析する場合は、16~128 ms 程度の窓長で STFT を適用する場合が多い. ILRMA においても、各音源のスペクトログラムを NMF で モデル化する関係上、低ランク行列として良く近似 できる窓長が存在するはずである.例として, Fig.1 (a) 及び (b) にボーカルの音響信号のスペクトログラ ムを異なる窓長で示している. この図から, NMF に よるスペクトログラムの近似精度は窓長の長さに大 きく依存することが予想される. 従って, ILRMA に おいては音源モデルの最適化の観点からも適切な窓 長が存在し、それは前述の空間モデルの窓長の最適 値とは異なる可能性がある.

以上の動機より、本稿では ILRMA の空間モデル と音源モデルの各変数の最適化において、異なる時 間周波数解像度のスペクトログラムを用いるアルゴ リズムを新たに提案し、性能の変化を実験的に調査 する. 但し、STFT の窓長に依存して周波数ビン数 I

Fig. 2 Narrow and wide window functions used in proposed algorithm.

及び時間フレーム数 J が変化するため, ILRMA の 最適化アルゴリズムにおいて異なる時間周波数解像 度のスペクトログラムの扱い方には任意性が生じる. この任意性を回避するため,提案手法では, Fig. 2 に 示すように, STFT における窓関数の幅を変化させ ることにより,見かけ上の窓長を変化させる.

2.3 最適化アルゴリズム

提案手法は、従来の ILRMA における分離行列 W_i と NMF 音源モデル $T_n \in \mathbb{R}_{\geq 0}^{I \times K}$ 及び $V_n \in \mathbb{R}_{\geq 0}^{K \times J}$ の反復更新則に、プロジェクションバック法(back projection: BP)[17] 及び時間周波数表現の変換を追 加した形となる.ここで、K は NMF の基底数を表 す.また時間周波数表現の変換とは、分離信号 Y_n に 関して、窓関数 $\omega^{(Ex)}$ で得られる空間モデル最適化 用の表現 $Y_n^{(Ex)}$ から、窓関数 $\omega^{(In)}$ で得られる音源モ デル最適化用の表現 $Y_n^{(In)}$ に変換する処理を指す.

提案手法の最適化アルゴリズムを Algorithm 1 に示 す.ここで、行列間の演算子 \odot 及び分数はそれぞれ要 素毎の積及び商、行列に対する $|\cdot|$ 及びドット付き指 数はそれぞれ要素毎の絶対値及び指数乗及び $[\cdot]_{r,c}$ は 行列の (r,c) 番目の要素を表す.また、 $e_n \in \{0,1\}^N$ は n 番目の要素のみ 1 の単位ベクトル、 m_{ref} は BP の ためのリファレンスチャネルを表す. Algorithm 1 中 の 6 及び 7 行目が NMF 音源モデルの更新、8–10 行 目が IP に基づく分離行列の更新、11–14 行目が m_{ref}

Algorithm 1 Proposed ILRMA

Input: $\{\mathbf{x}[l]\}_{l=1}^{L}$, maxIter Output: $\{\mathbf{y}[l]\}_{l=1}^{L}$ 1: Initialize $\{T_n\}_{n=1}^N, \{V_n\}_{n=1}^N, \{W_i\}_{i=1}^I$ 2: $\boldsymbol{X}_{n}^{(\mathrm{In})} = \mathrm{STFT}_{\boldsymbol{\omega}^{(\mathrm{In})}}(\mathbf{x})$ 2. $\mathbf{X}_{n}^{n} = \operatorname{STFT}_{\boldsymbol{\omega}^{(\operatorname{In})}}(\mathbf{x})$ 3. $\mathbf{X}_{n}^{(\operatorname{Ex})} = \operatorname{STFT}_{\boldsymbol{\omega}^{(\operatorname{Ex})}}(\mathbf{x})$ 4. $y_{ijn}^{(\operatorname{In})} = \boldsymbol{w}_{in}^{\operatorname{H}} \boldsymbol{x}_{ij}^{(\operatorname{In})} \quad \forall i, j, n$ 5. for iter = 1, 2, ..., maxIter do $T_n \leftarrow T_n \odot \left\{ rac{\left[|Y_n^{(\mathrm{In})}|^{\cdot 2} \odot (T_n V_n)^{\cdot - 2}
ight] V_n^{\mathrm{T}}}{(T_n V_n)^{\cdot - 1} V_n^{\mathrm{T}}}
ight\}^{\cdot rac{1}{2}}$ 6:
$$\begin{split} \boldsymbol{V}_{n} &\leftarrow \boldsymbol{V}_{n} \odot \left\{ \frac{\boldsymbol{T}_{n}^{\mathrm{T}} [|\boldsymbol{Y}_{n}^{(\mathrm{In})| \cdot 2} \odot (\boldsymbol{T}_{n} \boldsymbol{V}_{n}) \cdot ^{-2}]}{\boldsymbol{T}_{n}^{\mathrm{T}} (\boldsymbol{T}_{n} \boldsymbol{V}_{n}) \cdot ^{-1}} \right\}^{\cdot \frac{1}{2}} \\ \boldsymbol{U}_{in} &\leftarrow \frac{1}{J} \sum_{j} \frac{1}{[\boldsymbol{T}_{n} \boldsymbol{V}_{n}]_{i,j}} \boldsymbol{x}_{ij}^{(\mathrm{Ex})} \boldsymbol{x}_{ij}^{(\mathrm{Ex})\mathrm{H}} \; \forall i, n \end{split}$$
7:8: $\boldsymbol{w}_{in} \leftarrow (\boldsymbol{W}_i \boldsymbol{U}_{in})^{-1} \boldsymbol{e}_n \; \forall i, n$ 9: $\boldsymbol{w}_{in} \leftarrow \boldsymbol{w}_{in} \left(\boldsymbol{w}_{in}^{\mathrm{H}} \boldsymbol{U}_{in} \boldsymbol{w}_{in} \right)^{-\frac{1}{2}} \forall i, n$ 10: $\lambda_{in} \leftarrow \begin{bmatrix} \boldsymbol{W}_i^{-1} \end{bmatrix}_{m_{\mathrm{ref}},n} \ \forall i,n$ 11: $\begin{array}{c} \boldsymbol{w}_{in} \leftarrow \boldsymbol{\lambda}_{in} \boldsymbol{w}_{in} \forall i, n \\ \boldsymbol{y}_{ijn}^{(\text{Ex})} \leftarrow \boldsymbol{w}_{in}^{\text{H}} \boldsymbol{x}_{ij}^{(\text{Ex})} \; \forall i, j, n \end{array}$ 12:13: $[\boldsymbol{T}_n]_{i,k} \leftarrow |\lambda_{in}|^2 [\boldsymbol{T}_n]_{i,k} \quad \forall i,k,n$ 14: $\boldsymbol{Y}_{n}^{(\mathrm{In})} \leftarrow \mathrm{STFT}_{\boldsymbol{\omega}^{(\mathrm{In})}}(\mathrm{ISTFT}_{\widetilde{\boldsymbol{\omega}}^{(\mathrm{Ex})}}(\boldsymbol{Y}_{n}^{(\mathrm{Ex})})) \; \forall n$ 15:16: end for 17: $\mathbf{y} = \text{ISTFT}_{\widetilde{\boldsymbol{\omega}}^{(\text{Ex})}}(\boldsymbol{Y}_n^{(\text{Ex})})$

番目のチャネルへの BP, 15 行目が異なる解像度の時 間周波数表現の変換を表す.この最適化アルゴリズム において,空間モデル用の窓関数 ω^(Ex)と音源モデ ル用の窓関数 ω^(In)が一致する場合は,14 行目の時 間領域への変換及び時間周波数領域への変換(スペ クトログラム無矛盾性を保証する処理)が挿入され ているため, consistent ILRMA のアルゴリズムに一 致する.従って,提案手法は consistent ILRMA を窓 関数に関して一般化した手法とも解釈できる.

3 実験

3.1 実験条件

RWCP データベース [18] 収録のインパルス応答 E2A ($T_{60} = 300 \text{ ms}$) による 2 音源の畳み込み混合 を行い, 10 曲分の 2 チャネル観測信号を生成した. そして, これらの観測信号に対する BSS 性能を consistent ILRMA と比較した.評価指標は音源対歪み 比 (source-to-distortion ratio: SDR) [19] の改善量 (SDRi)を用いた.STFT における窓関数 $\omega^{(\text{Ex})}$ 及び $\omega^{(\text{In})}$ には長さ 256 ms の Chebyshev 窓を用い,サイ ドローブレベルパラメタを変化させることにより,窓 関数の見かけ上の幅を変更した.空間モデル及び音 源モデルの最適化における両方の Chebyshev 窓のサ イドローブレベルには,Table 1 に示す値を用い,こ れらを総当たり的に変化させた.その他の実験条件 は Table 1 に示す通りである.なお,STFT の実装に

Table 1 Expe	erimental conditions
Window shift length	$32 \mathrm{ms}$
Side lobe level of Chebyshev window [dB]	{40, 50, 60, 70, 80, 90, 100, 120, 150, 200, 300, 500, 700, 1000, 1500}
Number of bases K	10
Initialization of	W_i : identity matrix
parameters	T_n and V_n : random matrices
Number of iterations	200
Number of trials	10 with different random seeds
Reference channel $m_{\rm ref}$	1

は DGTtool [20, 21] を用いた.

3.2 実験結果

各サイドローブレベルに対して,異なる乱数シード を用いて 10 回実験を行った際の平均 SDRi を Fig. 3 に示す.なお, Fig. 3 (a) は 10 曲の観測信号全ての平 均 SDRi, Fig. 3 (b)~(d) は 10 曲の観測信号から選 んだ 3 曲の平均 SDRi を示している.Fig. 3 (b)~(d) の音源はそれぞれギターとボーカルの混合音源 (Song 1),バイオリンとボーカルの混合音源 (Song 2),ド ラムとボーカルの混合音源 (Song 3) である.Fig. 3 の太線で囲んだ対角部分は従来の consistent ILRMA の結果,それ以外の部分は異なる解像度の時間周波 数表現を用いる提案手法の結果に対応している.

Fig. 3 (b)~(d) において,最も高い平均 SDRi を示 しているのは,空間モデル用の窓関数 $\omega^{(Ex)}$,及び音 源モデル用の窓関数 $\omega^{(In)}$ のサイドローブレベルがそ れぞれ 50 dB と 60 dB, 60 dB と 90 dB 及び 70 dB と 120 dB の場合であり,対角成分 (consistent ILRMA の結果)から外れた場所に位置していることが分か る.また,Fig. 3 (a) より, 10 曲の観測信号全ての 平均 SDRi においても,空間モデル用の窓関数 $\omega^{(Ex)}$ のサイドローブレベルが 80 dB や 90 dB の場合は, 音源モデル用の窓関数 $\omega^{(In)}$ のサイドローブレベルを 100 dB や 120 dB とした方が, consistent ILRMA よ りも高い性能を示すことが読み取れる.以上から,音 源モデル及び空間モデルの最適化に同一の窓関数を 用いることが常に最善の結果を与えるとは限らない ことが分かる.

4 おわりに

本稿では、ILRMA において、空間モデル及び音源 モデルの最適化にそれぞれ異なる窓長の窓関数を導 入する手法を提案した.実験結果から、提案手法は consistent ILRMA と比較して、分離精度が向上する 場合があることが確認された.今後の課題として、観 測信号ごとに両モデルで用いる窓関数を最適化する ことが挙げられる.

Ave	erage	age Side lobe level used in spatial model optimization [dB]												A	verage	•		Side	lobe	evel	used	in sp	oatia	mod	el opt	timiza	ation	[dB]					
S	DRi	40	50	60	70	80	90	100	120	150	200	300	500	700	1000	1500		SDRi	40	50	60	70	80	90	100	120	150	200	300	500	700	1000 ·	1500
	40	3.25	4.55	1.21	1.24	1.66	1.64	1.80	1.70	1.61	1.69	2.09	2.25	2.00	1.73	0.89		40	3.17	3.84	1.26	2.50	1.90	1.32	1.01	1.14	1.27	1.29	1.00	1.45	0.21	0.16	-1.02
	50	3.89	6.86	4.77	4.73	4.76	4.43	4.33	4.53	5.05	5.74	5.72	5.82	5.18	4.62	3.96		_ 50	3.49	12.49	3.62	3.66	3.00	1.74	2.11	2.79	2.78	3.86	5.26	5.85	5.25	4.69	2.83
Į į	60	2.68	6.83	9.17	7.92	7.87	6.88	6.78	6.80	6.99	6.91	6.73	6.34	6.13	5.29	4.22		留 60	-1.10	13.06	12.61	10.14	9.43	9.50	9.19	8.66	8.41	7.01	7.76	5.25	4.61	4.23	3.36
2 2	70	2.02	5.87	6.96	8.42	6.96	6.85	6.50	6.20	5.80	5.41	5.16	5.29	5.30	5.19	4.07	E	<u> </u>	2.32	7.98	1.49	11.91	11.11	9.64	9.57	8.80	8.11	7.74	6.73	5.55	5.20	3.61	4.38
el used	80	1.18	3.28	7.20	8.10	7.58	7.66	7.08	6.63	6.28	5.84	5.30	4.96	4.92	4.73	3.82	, p	음 80	-1.90	-0.53	6.16	12.78	11.81	10.81	10.34	9.45	9.07	8.60	7.57	6.14	5.23	4.49	3.77
	90	0.58	1.16	6.61	8.39	7.62	7.61	7.32	6.80	6.47	6.07	5.32	4.79	4.87	4.52	3.66	SL SL	<u>1</u> 90	-3.11	-2.51	9.62	12.62	11.77	11.35	9.70	9.03	8.67	8.49	7.38	6.50	5.83	4.51	4.28
	100	0.22	0.80	5.86	7.72	8.19	7.62	7.38	6.89	6.41	5.82	5.27	4.93	4.86	4.42	3.44	0	. <u>E</u> 100	-2.56	-0.35	8.74	12.32	12.02	10.81	10.12	9.51	8.95	7.99	6.89	6.22	5.64	4.40	4.53
<u>a</u> 2	120	-0.45	0.00	4.60	6.68	8.30	8.03	7.38	6.75	6.33	5.70	5.22	5.01	4.80	4.33	3.46	ş	8 120	-3.54	-1.26	10.88	9.76	11.94	10.85	10.63	9.27	8.81	7.77	6.84	6.66	6.31	5.62	4.71
e e	150	-1.32	-0.56	4.08	4.20	6.56	6.23	7.49	6.65	6.21	5.64	5.10	4.84	4.81	4.22	3.16	e	0 150	-3.86	-2.29	8.20	9.23	11.36	11.42	10.61	9.23	8.73	7.82	6.83	6.41	6.33	6.11	4.58
2 2	200	-2.41	-1.92	5.19	4.29	4.93	6.73	7.12	6.15	6.22	5.67	5.14	4.61	4.25	4.14	3.26	0	8 200	-7.45	-7.61	5.11	5.29	6.89	9.98	10.87	10.36	9.05	8.22	6.75	6.32	6.32	6.64	5.05
e de	300	-1.12	2.08	5.38	5.07	4.95	4.56	5.07	4.08	5.85	5.42	5.10	4.34	4.04	4.18	3.35	de	E 300	-3.94	10.08	5.20	5.59	4.86	4.82	6.39	8.89	10.10	8.46	7.17	6.58	6.47	6.58	5.29
is 5	500	0.34	2.31	4.46	4.13	4.35	4.19	3.63	2.93	3.53	4.80	4.48	4.25	3.99	3.88	3.24	ŝ	₽ 500	2.28	11.98	4.38	-1.31	2.83	2.55	2.57	4.05	4.82	8.43	7.69	6.69	6.22	6.11	5.52
	700	-0.91	3.34	5.33	4.13	4.62	4.50	3.85	3.35	3.41	4.01	3.56	4.40	3.89	3.84	2.92		0 700	-4.74	12.43	3.96	3.22	3.33	4.03	2.74	2.65	3.68	4.96	7.61	6.26	5.56	5.48	4.12
	1000	-0.49	3.70	4.74	4.33	4.32	3.97	3.70	3.45	3.55	2.95	3.07	4.44	3.80	3.65	2.96		<i>"</i> 100	0 -5.30	11.65	3.60	3.39	2.91	3.46	3.06	3.32	3.50	3.34	5.36	7.01	5.86	4.86	4.29
	1500	1.43	3.79	4.53	3.90	3.96	4.21	3.93	4.10	3.50	2.38	2.32	3.82	3.45	3.48	2.94		150	0 2.78	10.72	2.55	2.67	2.18	2.51	2.11	2.06	2.49	2.89	1.43	5.66	6.40	4.45	4.22
		Side lobe level used in spatial model optimization [dB]																` '															
Ave	rage			Side	lobe	eve	usec	l in s	patia	mod	el op	timiza	ation	[dB]			A	verage			Side	lobe	eve	used	in sp	oatial	mod	el opi	timiza	ation	[dB]		
Ave S	erage DRi	40	50	Side 60	lobe 70	level 80	usec 90	l in sj 100	patia 120	mod 150	el op 200	timiza 300	ation 500	[dB] 700	1000	1500	A	verage SDRi	40	50	Side 60	lobe 70	level 80	used 90	in sp 100	oatial 120	mod 150	el op 200	timiza 300	tion 500	[dB] 700	1000 -	1500
Ave S	erage DRi 40	40 -0.23	50 3.26	Side 60 0.16	lobe 70 -0.64	evel 80 -1.76	usec 90 -1.73	l in s 100 -1.44	patial 120 -1.57	mod 150 -1.22	el op 200 0.04	timiza 300 1.13	ation 500 0.79	[dB] 700 0.43	1000 0.17	1500 -1.21	A	verage SDRi 40	40	50 8.62	Side 60 5.02	lobe 70 4.58	evel 80 4.60	used 90 4.61	in sp 100 4.68	0atial 120 4.78	mod 150 4.94	el op 200 4.80	timiza 300 5.45	tion 500 5.79	[dB] 700 5.75	1000	1 500 5.03
Ave S	erage DRi 40 50	40 -0.23 3.05	50 3.26 13.08	Side 60 0.16 3.50	10be 70 -0.64 2.26	level 80 -1.76 2.67	usec 90 -1.73 1.92	1 in s 100 -1.44 2.42	patia 120 -1.57 2.92	mod 150 -1.22 3.13	el op 200 0.04 4.42	timiza 300 1.13 5.11	500 0.79 6.49	[dB] 700 0.43 7.27	1000 0.17 4.74	1500 -1.21 4.77	A	verage SDRi 40	40 1.32 1.93	50 8.62 10.03	Side 60 5.02 10.07	lobe 70 4.58 10.10	80 4.60	used 90 4.61 10.25	in sp 100 4.68 10.21	120 4.78	mod 150 4.94 10.00	el op 200 4.80 9.87	timiza 300 5.45 9.99	tion 500 5.79 9.81	[dB] 700 5.75 8.85	1000 5.56 9.90	1500 5.03 9.42
Ave S	erage DRi 40 50 60	40 -0.23 3.05 5.77	50 3.26 13.08 10.95	Side 60 0.16 3.50 12.21	70 -0.64 2.26 8.31	80 -1.76 2.67 10.03	usec 90 -1.73 1.92 11.18	1 in s 100 -1.44 2.42 10.76	patia 120 -1.57 2.92 10.72	mod 150 -1.22 3.13 11.54	el op 200 0.04 4.42 10.76	timiza 300 1.13 5.11 8.69	500 0.79 6.49 9.92	[dB] 700 0.43 7.27 9.31	1000 0.17 4.74 8.46	1500 -1.21 4.77 6.86	A	verage SDRi 40 50 60	40 1.32 1.93 2.06	50 8.62 10.03 1.77	Side 60 5.02 10.07 12.19	lobe 70 4.58 10.10 10.13	80 4.60 10.37 7.60	used 90 4.61 10.25 7.88	in sp 100 4.68 10.21 8.63	120 4.78 10.25 9.02	mod 150 4.94 10.00 9.32	el op 200 4.80 9.87 10.00	timiza 300 5.45 9.99 9.59	5.79 9.81 9.32	[dB] 700 5.75 8.85 10.56	1000 5.56 9.90 10.63	1500 5.03 9.42 8.02
Ave S	erage DRi 40 50 60 70	40 -0.23 3.05 5.77 4.26	50 3.26 13.08 10.95 12.67	Side 60 0.16 3.50 12.21 13.33	lobe 70 -0.64 2.26 8.31 10.48	80 -1.76 2.67 10.03 11.26	usec 90 -1.73 1.92 11.18 11.36	1 in s 100 -1.44 2.42 10.76 11.03	patial 120 -1.57 2.92 10.72 11.12	mod 150 -1.22 3.13 11.54 11.13	el op 200 0.04 4.42 10.76 10.79	timiza 300 1.13 5.11 8.69 10.32	500 0.79 6.49 9.92 10.12	[dB] 700 0.43 7.27 9.31 9.04	1000 0.17 4.74 8.46 9.34	1500 -1.21 4.77 6.86 7.19	A	verage SDRi 40 50 (BP) c 70	40 1.32 1.93 2.06 1.78	50 8.62 10.03 1.77 1.05	Side 60 5.02 10.07 12.19 13.64	lobe 70 4.58 10.10 10.13 6.33	80 4.60 10.37 7.60 5.81	90 4.61 10.25 7.88 5.54	in sp 100 4.68 10.21 8.63 5.09	120 4.78 10.25 9.02 4.91	mod 150 4.94 10.00 9.32 3.86	el opt 200 4.80 9.87 10.00 3.40	300 5.45 9.99 9.59 3.77	5.79 9.81 9.32 6.51	[dB] 700 5.75 8.85 10.56 7.46	1000 5.56 9.90 10.63 9.54	1500 5.03 9.42 8.02 7.03
ed in Ave 2	rage DRi 50 60 70 80	40 -0.23 3.05 5.77 4.26 1.48	50 3.26 13.08 10.95 12.67 8.30	Side 60 0.16 3.50 12.21 13.33 13.54	lobe 70 -0.64 2.26 8.31 10.48 10.80	level 80 -1.76 2.67 10.03 11.26 11.78	usec 90 -1.73 1.92 11.18 11.36 12.24	1 in s 100 -1.44 2.42 10.76 11.03 10.56	patia 120 -1.57 2.92 10.72 11.12 10.87	mod 150 -1.22 3.13 11.54 11.13 10.49	el op 200 0.04 4.42 10.76 10.79 10.56	timiza 300 1.13 5.11 8.69 10.32 10.16	ation 500 0.79 6.49 9.92 10.12 9.83	[dB] 700 0.43 7.27 9.31 9.04 9.72	1000 0.17 4.74 8.46 9.34 8.89	1500 -1.21 4.77 6.86 7.19 7.32	ad in	verage SDRi 40 50 70 70 80	40 1.32 1.93 2.06 1.78 1.58	50 8.62 10.03 1.77 1.05 -0.17	Side 60 5.02 10.07 12.19 13.64 14.25	lobe 70 4.58 10.10 10.13 6.33 8.07	evel 80 4.60 10.37 7.60 5.81 5.86	used 90 4.61 10.25 7.88 5.54 6.80	in sp 100 4.68 10.21 8.63 5.09 5.84	atial 120 4.78 10.25 9.02 4.91 4.50	mod 150 4.94 10.00 9.32 3.86 4.61	el opt 200 4.80 9.87 10.00 3.40 3.51	timiza 300 5.45 9.99 9.59 3.77 3.55	ation 500 5.79 9.81 9.32 6.51 4.87	[dB] 700 5.75 8.85 10.56 7.46 5.97	1000 5.56 9.90 10.63 9.54 6.48	1500 5.03 9.42 8.02 7.03 6.99
used in Sation IdB1	Prage DRi 40 50 60 70 80 90	40 -0.23 3.05 5.77 4.26 1.48 0.20	50 3.26 13.08 10.95 12.67 8.30 4.17	Side 60 0.16 3.50 12.21 13.33 13.54 13.78	Iobe 70 -0.64 2.26 8.31 10.48 10.80 12.04	level 80 -1.76 2.67 10.03 11.26 11.78 12.29	usec 90 -1.73 1.92 11.18 11.36 12.24 11.22	1 in sp 100 -1.44 2.42 10.76 11.03 10.56 11.19	patia 120 -1.57 2.92 10.72 11.12 10.87 10.35	mod 150 -1.22 3.13 11.54 11.13 10.49 10.42	el op 200 0.04 4.42 10.76 10.79 10.56 9.82	timiza 300 1.13 5.11 8.69 10.32 10.16 9.25	ation 500 0.79 6.49 9.92 10.12 9.83 9.09	[dB] 700 0.43 7.27 9.31 9.04 9.72 9.66	1000 0.17 4.74 8.46 9.34 8.89 9.32	1500 -1.21 4.77 6.86 7.19 7.32 7.43	used in A	verage SDRi 40 50 70 80 90	40 1.32 1.93 2.06 1.78 1.58 1.35	50 8.62 10.03 1.77 1.05 -0.17 0.74	Side 60 5.02 10.07 12.19 13.64 14.25 9.63	lobe 70 4.58 10.10 10.13 6.33 8.07 13.17	evel 80 4.60 10.37 7.60 5.81 5.86 3.78	used 90 4.61 10.25 7.88 5.54 6.80 5.45	in sp 100 4.68 10.21 8.63 5.09 5.84 5.57	atial 120 4.78 10.25 9.02 4.91 4.50 4.30	mod 150 4.94 10.00 9.32 3.86 4.61 3.98	el opt 200 4.80 9.87 10.00 3.40 3.51 3.30	timiza 300 5.45 9.99 9.59 3.77 3.55 2.89	5.79 9.81 9.32 6.51 4.87 4.45	[dB] 700 5.75 8.85 10.56 7.46 5.97 5.01	1000 5.56 9.90 10.63 9.54 6.48 6.62	1500 5.03 9.42 8.02 7.03 6.99 6.20
rel used in Station [dB]	Prage DRi 40 50 60 70 80 90 100	40 -0.23 3.05 5.77 4.26 1.48 0.20 -1.51	50 3.26 13.08 10.95 12.67 8.30 4.17 0.52	Side 60 0.16 3.50 12.21 13.33 13.54 13.78 13.49	Iobe 70 -0.64 2.26 8.31 10.48 10.80 12.04 12.54	level 80 -1.76 2.67 10.03 11.26 11.78 12.29 11.14	usec 90 -1.73 1.92 11.18 11.36 12.24 11.22 11.73	1 in s 100 -1.44 2.42 10.76 11.03 10.56 11.19 11.39	120 -1.57 2.92 10.72 11.12 10.87 10.35 10.27	mod 150 -1.22 3.13 11.54 11.13 10.49 10.42 10.45	el op 200 0.04 4.42 10.76 10.79 10.56 9.82 9.87	timiza 300 1.13 5.11 8.69 10.32 10.16 9.25 9.29	ation 500 0.79 6.49 9.92 10.12 9.83 9.09 9.66	[dB] 700 0.43 7.27 9.31 9.04 9.72 9.66 9.93	1000 0.17 4.74 8.46 9.34 8.89 9.32 9.41	1500 -1.21 4.77 6.86 7.19 7.32 7.43 7.02	vel used in	timization [dB] 50 00 00 00 00 00 00 00 00 00	40 1.32 1.93 2.06 1.78 1.58 1.35 -0.12	50 8.62 10.03 1.77 1.05 -0.17 0.74 1.38	Side 60 5.02 10.07 12.19 13.64 14.25 9.63 9.78	lobe 70 4.58 10.10 10.13 6.33 8.07 13.17 8.21	80 4.60 10.37 7.60 5.81 5.86 3.78 10.59	used 90 4.61 10.25 7.88 5.54 6.80 5.45 4.74	in sr 100 4.68 10.21 8.63 5.09 5.84 5.57 4.92	atial 120 4.78 10.25 9.02 4.91 4.50 4.30 4.55	mod 150 4.94 10.00 9.32 3.86 4.61 3.98 3.52	el opt 200 4.80 9.87 10.00 3.40 3.51 3.30 3.17	timiza 300 5.45 9.99 9.59 3.77 3.55 2.89 3.00	ation 500 5.79 9.81 9.32 6.51 4.87 4.45 4.53	[dB] 700 5.75 8.85 10.56 7.46 5.97 5.01 4.76	1000 5.56 9.90 10.63 9.54 6.48 6.62 5.95	1500 5.03 9.42 8.02 7.03 6.99 6.20 6.21
level used in	40 50 60 70 80 90 100 120	40 -0.23 3.05 5.77 4.26 1.48 0.20 -1.51 -0.35	50 3.26 13.08 10.95 12.67 8.30 4.17 0.52 -0.45	Side 60 0.16 3.50 12.21 13.33 13.54 13.78 13.49 11.52	Iobe 70 -0.64 2.26 8.31 10.48 10.80 12.04 12.54 13.20	level 80 -1.76 2.67 10.03 11.26 11.78 12.29 11.14 12.82	usec 90 -1.73 11.92 11.18 11.36 12.24 11.22 11.73 11.23	1 in s 100 -1.44 2.42 10.76 11.03 10.56 11.19 11.39 11.56	120 -1.57 2.92 10.72 11.12 10.87 10.35 10.27 10.62	mod 150 -1.22 3.13 11.54 11.13 10.49 10.42 10.45 10.55	el op 200 0.04 4.42 10.76 10.79 10.56 9.82 9.87 9.89	timiza 300 1.13 5.11 8.69 10.32 10.16 9.25 9.29 9.19	ation 500 0.79 6.49 9.92 10.12 9.83 9.09 9.66 9.94	[dB] 700 0.43 7.27 9.31 9.04 9.72 9.66 9.93 9.46	1000 0.17 4.74 8.46 9.34 8.89 9.32 9.41 9.34	1500 -1.21 4.77 6.86 7.19 7.32 7.43 7.02 7.09	evel used in	obtimization [dB] 00 00 00 00 00 00 00 00 00 00 0	40 1.32 1.93 2.06 1.78 1.58 1.35 -0.12 0.31	50 8.62 10.03 1.77 1.05 -0.17 0.74 1.38 -0.08	Side 60 5.02 10.07 12.19 13.64 14.25 9.63 9.78 13.65	lobe 70 4.58 10.10 10.13 6.33 8.07 13.17 8.21 15.32	80 4.60 10.37 7.60 5.81 5.86 3.78 10.59 12.84	used 90 4.61 10.25 7.88 5.54 6.80 5.45 4.74 11.30	in sr 100 4.68 10.21 8.63 5.09 5.84 5.57 4.92 4.49	2atial 120 4.78 10.25 9.02 4.91 4.50 4.30 4.55 3.95	mod 150 4.94 10.00 9.32 3.86 4.61 3.98 3.52 2.59	el opt 200 4.80 9.87 10.00 3.40 3.51 3.30 3.17 2.56	timiza 300 5.45 9.99 9.59 3.77 3.55 2.89 3.00 2.45	500 5.79 9.81 9.32 6.51 4.87 4.45 4.53 4.25	[dB] 700 5.75 8.85 10.56 7.46 5.97 5.01 4.76 4.74	1000 / 5.56 9.90 10.63 9.54 6.48 6.62 5.95 5.28	1500 5.03 9.42 8.02 7.03 6.99 6.20 6.21 6.26
be level used in	40 50 60 70 80 90 100 120 150	40 -0.23 3.05 5.77 4.26 1.48 0.20 -1.51 -0.35 -1.70	50 3.26 13.08 10.95 12.67 8.30 4.17 0.52 -0.45 0.06	Side 60 0.16 3.50 12.21 13.33 13.54 13.78 13.49 11.52 5.56	Iobe 70 -0.64 2.26 8.31 10.48 10.80 12.04 12.54 13.20 6.66	level 80 -1.76 2.67 10.03 11.26 11.78 12.29 11.14 12.82 11.54	usec 90 -1.73 1.92 11.18 11.36 12.24 11.22 11.73 11.23 11.96	l in s 100 -1.44 2.42 10.76 11.03 10.56 11.19 11.39 11.56 12.43	120 -1.57 2.92 10.72 11.12 10.87 10.35 10.27 10.62 11.13	mod 150 -1.22 3.13 11.54 11.13 10.49 10.42 10.45 10.55 11.09	el op 200 0.04 4.42 10.76 10.79 10.56 9.82 9.87 9.89 9.61	timiza 300 1.13 5.11 8.69 10.32 10.16 9.25 9.29 9.19 9.22	ation 500 0.79 6.49 9.92 10.12 9.83 9.09 9.66 9.94 9.40	[dB] 700 0.43 7.27 9.31 9.04 9.72 9.66 9.93 9.46 9.25	1000 0.17 4.74 8.46 9.34 8.89 9.32 9.41 9.34 8.98	1500 -1.21 4.77 6.86 7.19 7.32 7.43 7.02 7.09 6.39	be level used in	Verage 3DRi 40 50 00 00 120 120 150	40 1.32 1.93 2.06 1.78 1.58 1.35 -0.12 0.31 -1.96	50 8.62 10.03 1.77 1.05 -0.17 0.74 1.38 -0.08 -0.36	Side 60 5.02 10.07 12.19 13.64 14.25 9.63 9.78 13.65 12.88	lobe 70 4.58 10.10 10.13 6.33 8.07 13.17 8.21 15.32 11.96	level 80 4.60 10.37 7.60 5.81 5.86 3.78 10.59 12.84 6.78	used 90 4.61 10.25 7.88 5.54 6.80 5.45 4.74 11.30 2.90	in sp 100 4.68 10.21 8.63 5.09 5.84 5.57 4.92 4.49 6.37	atial 120 4.78 10.25 9.02 4.91 4.50 4.30 4.55 3.95 3.74	mod 150 4.94 10.00 9.32 3.86 4.61 3.98 3.52 2.59 2.44	el opt 200 4.80 9.87 10.00 3.40 3.51 3.30 3.17 2.56 2.24	5.45 9.99 9.59 3.77 3.55 2.89 3.00 2.45 2.53	500 5.79 9.81 9.32 6.51 4.87 4.45 4.53 4.25 3.29	[dB] 700 5.75 8.85 10.56 7.46 5.97 5.01 4.76 4.74 4.21	5.56 9.90 10.63 9.54 6.48 6.62 5.95 5.28 4.20	1500 5.03 9.42 8.02 7.03 6.99 6.20 6.21 6.26 4.51
Plobe level used in CABI CONTRACTION CONTRACTICON CONTRACTICON CONTRACTION CONTRACTICON CO	rage DRi 40 50 60 70 80 90 100 120 150 200	40 -0.23 3.05 5.77 4.26 1.48 0.20 -1.51 -0.35 -1.70 -3.82	50 3.26 13.08 10.95 12.67 8.30 4.17 0.52 -0.45 0.06 -1.97	Side 60 0.16 3.50 12.21 13.33 13.54 13.78 13.49 11.52 5.56 5.94	Iobe 70 -0.64 2.26 8.31 10.48 10.80 12.04 12.54 13.20 6.66 9.05	level 80 -1.76 2.67 10.03 11.26 11.78 12.29 11.14 12.82 11.54 3.76	USEC 90 -1.73 1.92 11.18 11.36 12.24 11.22 11.73 11.23 11.96 7.28	l in s 100 -1.44 2.42 10.76 11.03 10.56 11.19 11.39 11.56 12.43 9.77	patia 120 -1.57 2.92 10.72 11.12 10.87 10.35 10.27 10.62 11.13 11.91	mod 150 -1.22 3.13 11.54 11.13 10.49 10.42 10.45 10.55 11.09 11.51	el op 200 0.04 4.42 10.76 10.79 10.56 9.82 9.87 9.89 9.61 11.22	timiza 300 1.13 5.11 8.69 10.32 10.16 9.25 9.29 9.19 9.22 9.75	ation 500 0.79 6.49 9.92 10.12 9.83 9.09 9.66 9.94 9.40 8.91	[dB] 700 0.43 7.27 9.31 9.04 9.72 9.66 9.93 9.46 9.25 7.93	1000 0.17 4.74 8.46 9.34 8.89 9.32 9.41 9.34 8.98 8.76	1500 -1.21 4.77 6.86 7.19 7.32 7.43 7.02 7.09 6.39 6.38	e lobe level used in	verage 3DRi 40 00 00 00 100 120 150 200	40 1.32 1.93 2.06 1.78 1.58 1.35 -0.12 0.31 -1.96 -2.20	50 8.62 10.03 1.77 1.05 -0.17 0.74 1.38 -0.08 -0.36 0.22	Side 60 5.02 10.07 12.19 13.64 14.25 9.63 9.78 13.65 12.88 12.75	lobe 70 4.58 10.10 10.13 6.33 8.07 13.17 8.21 15.32 11.96 10.26	level 80 4.60 10.37 7.60 5.81 5.86 3.78 10.59 12.84 6.78 10.68	used 90 4.61 10.25 7.88 5.54 6.80 5.45 4.74 11.30 2.90 12.53	in sr 100 4.68 10.21 8.63 5.09 5.84 5.57 4.92 4.49 6.37 11.68	atial 120 4.78 10.25 9.02 4.91 4.50 4.30 4.55 3.95 3.74 3.70	mod 150 4.94 10.00 9.32 3.86 4.61 3.98 3.52 2.59 2.44 2.07	el opt 200 4.80 9.87 10.00 3.40 3.51 3.30 3.17 2.56 2.24 2.04	timiza 300 5.45 9.99 9.59 3.77 3.55 2.89 3.00 2.45 2.53 2.53	ation 5.79 9.81 9.32 6.51 4.87 4.45 4.53 4.25 3.29 3.29	[dB] 700 5.75 8.85 10.56 7.46 5.97 5.01 4.76 4.74 4.21 3.60	5.56 9.90 10.63 9.54 6.48 6.62 5.95 5.28 4.20 3.96	1500 5.03 9.42 8.02 7.03 6.99 6.20 6.21 6.26 4.51 4.46
ide lobe level used in	Prage DRi 40 50 60 70 80 90 100 120 150 200 300	40 -0.23 3.05 5.77 4.26 1.48 0.20 -1.51 -0.35 -1.70 -3.82 -2.70	50 3.26 13.08 10.95 12.67 8.30 4.17 0.52 -0.45 0.06 -1.97 -1.64	Side 60 0.16 3.50 12.21 13.33 13.54 13.78 13.49 11.52 5.56 5.94 7.15	Iobe 70 -0.64 2.26 8.31 10.48 10.80 12.04 13.20 6.66 9.05 7.62	level 80 -1.76 2.67 10.03 11.26 11.78 12.29 11.14 12.82 11.54 3.76 5.71	usec 90 -1.73 1.92 11.18 11.36 12.24 11.22 11.73 11.23 11.96 7.28 5.25	l in s 100 -1.44 2.42 10.76 11.03 10.56 11.19 11.39 11.56 12.43 9.77 3.82	patia 120 -1.57 2.92 10.72 11.12 10.35 10.27 10.62 11.13 11.91 6.28	mod 150 -1.22 3.13 11.54 11.13 10.49 10.42 10.45 10.45 10.55 11.09 11.51 8.53	el op 200 0.04 4.42 10.76 10.79 10.56 9.82 9.87 9.89 9.61 11.22 9.94	timiza 300 1.13 5.11 8.69 10.32 10.16 9.25 9.29 9.19 9.22 9.75 9.92	ation 500 0.79 6.49 9.92 10.12 9.83 9.09 9.66 9.94 9.40 8.91 7.94	[dB] 700 0.43 7.27 9.31 9.04 9.72 9.66 9.93 9.46 9.25 7.93 7.78	1000 0.17 4.74 8.46 9.34 8.89 9.32 9.41 9.34 8.98 8.76 8.18	1500 -1.21 4.77 6.86 7.19 7.32 7.43 7.02 7.09 6.39 6.38 6.50	ide lobe level used in	e model optimization [dB] 40 50 00 100 120 150 200 300 300	40 1.32 1.93 2.06 1.78 1.58 1.35 -0.12 0.31 -1.96 -2.20 -0.42	50 8.62 10.03 1.77 1.05 -0.17 0.74 1.38 -0.08 -0.36 0.22 5.74	Side 60 5.02 10.07 12.19 13.64 14.25 9.63 9.78 13.65 12.88 12.75 12.31	lobe 70 4.58 10.10 10.13 6.33 8.07 13.17 8.21 15.32 11.96 10.26 11.95	level 80 4.60 10.37 7.60 5.81 5.86 3.78 10.59 12.84 6.78 10.68 12.35	used 90 4.61 10.25 7.88 5.54 6.80 5.45 4.74 11.30 2.90 12.53 11.43	in sr 100 4.68 10.21 8.63 5.09 5.84 5.57 4.92 4.49 6.37 11.68 11.70	atial 120 4.78 10.25 9.02 4.91 4.50 4.30 4.55 3.95 3.74 3.70 9.83	mod 150 4.94 10.00 9.32 3.86 4.61 3.98 3.52 2.59 2.44 2.07 8.39	el opt 200 4.80 9.87 10.00 3.40 3.51 3.30 3.17 2.56 2.24 2.04 3.02	timiza 300 5.45 9.99 9.59 3.77 3.55 2.89 3.00 2.45 2.53 2.53 2.53	ation 5.79 9.81 9.32 6.51 4.87 4.45 4.25 3.29 3.37	[dB] 700 5.75 8.85 10.56 7.46 5.97 5.01 4.76 4.74 4.21 3.60 3.36	1000 5.56 9.90 10.63 9.54 6.48 6.62 5.95 5.28 4.20 3.96 3.56	1500 5.03 9.42 8.02 7.03 6.99 6.20 6.21 6.26 4.51 4.46 4.26
Side lobe level used in	rage DRi 40 50 60 70 80 90 100 120 150 200 300 500	40 -0.23 3.05 5.77 4.26 1.48 0.20 -1.51 -0.35 -1.70 -3.82 -2.70 -1.36	50 3.26 13.08 10.95 12.67 8.30 4.17 0.52 -0.45 0.06 -1.97 -1.64 -1.14	Side 60 0.16 3.50 12.21 13.33 13.54 13.49 11.52 5.56 5.94 7.15 7.65	Iobe 70 -0.64 2.26 8.31 10.48 10.48 12.04 12.54 13.20 6.66 9.05 7.62 5.67	80 -1.76 2.67 10.03 11.26 11.78 12.29 11.14 12.82 11.54 3.76 5.71 4.16	usec 90 -1.73 1.92 11.18 11.36 12.24 11.22 11.73 11.23 11.96 7.28 5.25 2.87	1 in s 100 -1.44 2.42 10.76 11.03 10.56 11.19 11.39 11.56 12.43 9.77 3.82 2.20	atia 120 -1.57 2.92 10.72 11.12 10.87 10.27 10.62 11.13 6.28 4.43	mod 150 -1.22 3.13 11.54 11.13 10.49 10.42 10.45 10.55 11.09 11.51 8.53 4.55	el op 200 0.04 4.42 10.76 10.76 9.82 9.87 9.89 9.61 11.22 9.94 4.61	timiza 300 1.13 5.11 8.69 10.32 10.16 9.25 9.29 9.19 9.22 9.75 9.92 9.55	ation 500 0.79 6.49 9.92 10.12 9.83 9.09 9.66 9.94 9.40 8.91 7.94 8.57	[dB] 700 0.43 7.27 9.31 9.04 9.72 9.66 9.93 9.46 9.25 7.93 7.78 8.06	1000 0.17 4.74 8.46 9.34 8.89 9.32 9.41 9.34 8.98 8.76 8.18 7.37	1500 -1.21 4.77 6.86 7.19 7.32 7.43 7.02 7.09 6.39 6.38 6.50 7.14	Side lobe level used in	rce model optimization [dB] 40 50 50 50 50 50 50 50 50 50 50 50 50 50	40 1.32 1.93 2.06 1.78 1.58 1.58 1.55 -0.12 0.31 -1.96 -2.20 -0.42 -0.09	50 8.62 10.03 1.77 1.05 -0.17 0.74 1.38 -0.08 -0.36 0.22 5.74 4.27	Side 60 5.02 10.07 12.19 13.64 14.25 9.63 9.78 13.65 12.88 12.75 12.31 4.15	lobe 70 4.58 10.10 10.13 6.33 8.07 13.17 8.21 15.32 11.96 10.26 11.95 11.16	level 80 4.60 10.37 7.60 5.81 5.86 3.78 10.59 12.84 6.78 10.68 12.35 3.84	used 90 4.61 10.25 7.88 5.54 6.80 5.45 4.74 11.30 2.90 12.53 11.43 9.17	in sr 100 4.68 10.21 8.63 5.09 5.84 5.57 4.92 4.49 6.37 11.68 11.70 4.61	atial 120 4.78 10.25 9.02 4.91 4.50 4.30 4.55 3.95 3.74 3.70 9.83 5.59	mod 150 4.94 10.00 9.32 3.86 4.61 3.98 3.52 2.59 2.44 2.07 8.39 11.12	el opt 200 4.80 9.87 10.00 3.40 3.51 3.30 3.17 2.56 2.24 2.04 3.02 11.92	timiza 300 5.45 9.99 9.59 3.77 3.55 2.89 3.00 2.45 2.53 2.53 2.53 1.44	ation 5.79 9.81 9.32 6.51 4.87 4.45 4.25 3.29 3.37 3.40	[dB] 700 5.75 8.85 10.56 7.46 5.97 5.01 4.76 4.74 4.21 3.60 3.36 3.51	1000 5.56 9.90 10.63 9.54 6.48 6.62 5.95 5.28 4.20 3.96 3.56 3.21	1500 5.03 9.42 8.02 7.03 6.99 6.20 6.21 6.26 4.51 4.46 4.26 2.67
Side lobe level used in	rage DRi 40 50 60 70 80 90 100 120 120 200 300 500 700	40 -0.23 3.05 5.77 4.26 1.48 0.20 -1.51 -0.35 -1.70 -3.82 -2.70 -1.36 -1.76	50 3.26 13.08 10.95 12.67 8.30 4.17 0.52 -0.45 0.06 -1.97 -1.64 -1.14 0.99	Side 60 0.16 3.50 12.21 13.33 13.54 13.78 13.49 11.52 5.56 5.94 7.15 7.65 4.69	70 -0.64 2.26 8.31 10.48 10.80 12.04 12.04 12.54 13.20 6.66 9.05 7.62 5.67 4.52	80 -1.76 2.67 10.03 11.26 11.78 12.29 11.14 12.82 11.54 3.76 5.71 4.16 4.32	usec 90 -1.73 1.92 11.18 11.36 12.24 11.22 11.73 11.23 11.23 11.96 7.28 5.25 2.87 5.21	1 in s 100 -1.44 2.42 10.76 11.03 10.56 11.19 11.39 11.56 12.43 9.77 3.82 2.20 4.69	atia 120 -1.57 2.92 10.72 11.12 10.87 10.27 10.62 11.13 11.91 6.28 4.43 4.72	mod 150 -1.22 3.13 11.54 11.13 10.49 10.42 10.45 10.55 11.09 11.51 8.53 4.55 3.56	el op 200 0.04 4.42 10.76 10.79 10.56 9.82 9.87 9.89 9.61 11.22 9.94 4.61 3.46	timiza 300 1.13 5.11 8.69 10.32 10.16 9.25 9.29 9.19 9.22 9.75 9.92 9.55 3.49	ation 500 0.79 6.49 9.92 10.12 9.83 9.09 9.66 9.94 9.40 8.91 7.94 8.57 9.85	[dB] 700 0.43 7.27 9.31 9.04 9.72 9.66 9.93 9.46 9.25 7.93 7.78 8.06 8.30	1000 0.17 4.74 8.46 9.34 8.89 9.32 9.41 9.34 8.98 8.76 8.18 7.37 7.56	1500 -1.21 4.77 6.86 7.19 7.32 7.43 7.02 7.09 6.39 6.38 6.50 7.14 5.90	Side lobe level used in	source model optimization [dB] 40 40 50 50 50 50 50 50 50 50 50 50 50 50 50	40 1.32 1.93 2.06 1.78 1.58 1.58 1.58 1.58 1.58 1.35 0.0.12 0.31 -1.96 -2.20 0.42 -0.09 0.53	50 8.62 10.03 1.77 1.05 -0.17 0.74 1.38 -0.08 -0.36 0.22 5.74 4.27 6.77	Side 60 5.02 10.07 12.19 13.64 14.25 9.63 9.78 13.65 12.88 12.75 12.31 4.15 13.89	lobe 70 4.58 10.10 10.13 6.33 8.07 13.17 8.21 15.32 11.96 10.26 11.95 11.16 12.79	level 80 4.60 10.37 7.60 5.81 5.86 3.78 10.59 12.84 6.78 10.68 12.35 3.84 11.61	90 4.61 10.25 7.88 5.54 6.80 5.45 4.74 11.30 2.90 12.53 11.43 9.17 11.72	in sp 100 4.68 10.21 8.63 5.09 5.84 5.57 4.92 4.49 6.37 11.68 11.70 4.61 11.13	atial 120 4.78 10.25 9.02 4.91 4.50 4.30 4.55 3.95 3.74 3.70 9.83 5.59 10.27	mod 150 4.94 10.00 9.32 3.86 4.61 3.98 2.59 2.44 2.07 8.39 11.12 10.59	el opt 200 4.80 9.87 10.00 3.40 3.51 3.30 3.17 2.56 2.24 2.04 3.02 11.92 10.99	timiza 300 5.45 9.99 9.59 3.77 3.55 2.89 3.00 2.45 2.53 2.53 2.53 1.44 7.11	ation 500 5.79 9.81 9.32 6.51 4.87 4.45 4.53 3.29 3.37 3.40	[dB] 700 5.75 8.85 10.56 7.46 5.97 5.01 4.76 4.74 4.21 3.60 3.36 3.51 3.42	1000 5.56 9.90 10.63 9.54 6.48 6.62 5.95 5.28 4.20 3.96 3.56 3.21 3.23	1500 5.03 9.42 8.02 7.03 6.99 6.20 6.21 6.26 4.51 4.46 4.26 2.67 2.51
Side lobe level used in Solution and Solution So	rage DRi 40 50 60 70 80 90 100 120 150 200 300 500 700 1000	40 -0.23 3.05 5.77 4.26 1.48 0.20 -1.51 -0.35 -1.70 -3.82 -2.70 -1.36 -1.76 -1.88	50 3.26 13.08 10.95 12.67 8.30 4.17 0.52 -0.45 0.06 -1.97 -1.64 -1.14 0.99 -0.02	Side 60 0.16 3.500 12.21 13.33 13.54 13.78 13.49 11.52 5.56 5.94 7.15 7.65 4.69 4.78	Iobe 70 -0.64 2.26 8.31 10.48 10.80 12.04 13.20 6.66 9.05 7.62 5.67 4.52	level 80 -1.76 2.67 10.03 11.26 11.78 12.29 11.14 12.82 11.54 3.76 5.71 4.16 4.32 5.87	usec 90 -1.73 1.922 11.18 11.36 12.24 11.22 11.73 11.23 11.96 7.28 5.25 2.87 5.25 2.87	100 -1.44 2.42 10.76 11.03 10.56 11.19 11.39 11.56 12.43 9.77 3.82 2.20 4.69 4.25	patial 120 -1.57 2.922 10.72 11.12 10.87 10.35 10.27 10.62 11.13 11.91 6.28 4.43 4.72 4.08	mod 150 -1.22 3.13 11.54 11.13 10.49 10.42 10.45 11.09 11.51 8.53 4.55 3.56 3.43	el op 200 0.04 4.42 10.76 10.79 9.82 9.87 9.89 9.61 11.22 9.94 4.61 3.46 2.61	timiz 300 1.13 5.11 8.69 10.32 10.16 9.25 9.29 9.19 9.22 9.75 9.92 9.55 3.49 -0.57	ation 500 0.79 6.49 9.92 10.12 9.83 9.09 9.66 9.94 9.40 8.91 7.94 8.57 9.85 7.79	[dB] 700 0.43 7.27 9.31 9.04 9.04 9.04 9.05 7.93 7.78 8.06 8.30 7.90	1000 0.17 4.74 8.46 9.34 9.32 9.41 9.34 8.98 8.76 8.18 7.37 7.56 7.85	1500 -1.21 4.77 6.86 7.19 7.32 7.43 7.02 7.09 6.39 6.38 6.50 7.14 5.90 5.94	Side lobe level used in	verage 300 200 200 200 200 200 200 200	40 1.32 1.93 2.06 1.78 1.58 1.58 1.35 -0.12 0.31 -1.96 -2.20 -0.42 -0.09 0.53 0.18	50 8.62 10.03 1.77 1.05 -0.17 0.74 1.38 -0.08 -0.36 0.22 5.74 4.27 6.77 6.96	Side 60 5.02 10.07 12.19 13.64 14.25 9.63 9.78 13.65 12.88 12.75 12.31 4.15 13.89 13.10	lobe 70 4.58 10.10 10.13 6.33 8.07 13.17 8.21 15.32 11.96 10.26 11.95 11.16 12.79 12.43	level 80 4.60 10.37 7.60 5.81 5.86 3.78 10.59 12.84 6.78 10.68 12.35 3.84 11.61 12.41	90 4.61 10.25 7.88 5.54 6.80 5.45 4.74 11.30 2.90 12.53 11.43 9.17 11.72 11.72	in sp 100 4.68 10.21 8.63 5.09 5.84 5.57 4.92 4.49 6.37 11.68 11.70 4.61 11.13 11.64	atial 120 4.78 10.25 9.02 4.91 4.50 4.55 3.95 3.74 3.70 9.83 5.59 10.27 10.31	mod 150 4.94 10.00 9.32 3.86 4.61 3.98 3.52 2.59 2.44 2.07 8.39 11.12 10.59 10.49	el opt 200 4.80 9.87 10.00 3.40 3.51 3.30 3.17 2.56 2.24 2.04 3.02 11.92 10.99 10.39	timiza 300 5.45 9.99 9.59 3.77 3.55 2.89 3.00 2.45 2.53 2.53 2.53 1.44 9.78	stion 5.79 9.81 9.32 6.51 4.87 4.53 4.25 3.29 3.37 3.40	[dB] 700 5.75 8.85 10.56 7.46 5.97 5.01 4.76 4.74 4.21 3.60 3.36 3.31 3.31	1000 5.56 9.90 10.63 9.54 6.48 6.62 5.95 5.28 4.20 3.96 3.56 3.21 3.23 3.39	1500 5.03 9.42 8.02 7.03 6.99 6.20 6.21 6.26 4.51 4.46 4.26 2.67 2.51 3.26
Side lobe level used in Side lobe lobe lobe lobe lobe lobe lobe lob	rage DRi 40 50 60 70 80 90 100 120 150 200 300 500 700 1000 1500	40 -0.23 3.05 5.77 4.26 1.48 0.20 -1.51 -0.35 -1.70 -3.82 -2.70 -1.36 -1.76 -1.88 -0.08	50 3.26 13.08 10.95 12.67 8.30 4.17 0.52 -0.45 0.06 -1.97 -1.64 -1.14 0.99 -0.02 -0.02	Side 60 0.16 3.50 12.21 13.33 13.54 13.78 13.49 11.52 5.56 5.94 7.15 7.65 4.69 4.78 4.78	Iobe 70 -0.64 2.26 8.31 10.48 10.80 12.04 13.20 6.666 9.05 7.62 5.67 4.52 3.611 2.26	level 80 -1.76 2.67 10.03 11.26 11.78 12.29 11.14 12.82 11.54 3.76 5.71 4.16 4.32 5.87 4.49	usec 90 -1.73 1.92 11.18 11.36 12.24 11.22 11.73 11.23 11.96 7.28 5.25 2.87 5.21 5.46 4.88	l in sp 100 -1.44 2.42 10.76 11.03 10.56 11.19 11.39 11.56 12.43 9.77 3.82 2.20 4.69 4.25 4.88	patial 120 -1.57 2.92 10.72 11.12 10.87 10.27 10.35 10.27 11.13 11.13 11.13 4.43 4.72 4.08	mod 150 -1.22 3.13 11.54 11.13 10.49 10.42 10.45 10.55 11.09 11.51 8.53 3.56 3.43 4.82	el op 200 0.04 4.42 10.76 10.79 10.56 9.82 9.87 9.89 9.61 11.22 9.94 4.61 3.46 2.61 2.07	timiz 300 1.13 5.11 8.69 10.32 10.16 9.25 9.29 9.29 9.29 9.55 3.49 -0.57 3.10	ation 500 0.79 6.49 9.92 10.12 9.83 9.09 9.66 9.94 9.40 8.91 7.94 8.57 7.79 6.55	[dB] 700 0.43 7.27 9.31 9.04 9.72 9.66 9.93 9.46 9.25 7.93 7.78 8.06 8.30 7.90 7.26	1000 0.17 4.74 8.46 9.34 8.89 9.32 9.41 9.34 8.98 8.76 8.18 7.37 7.56 7.15	1500 -1.21 4.77 6.86 7.19 7.32 7.43 7.02 7.09 6.39 6.38 6.50 7.14 5.90 5.94 5.51	Side lobe level used in	verage 40 50 00 0 00 100 100 100 100 100 100	40 1.32 1.93 2.06 1.78 1.58 1.35 -0.12 0.31 -1.96 -2.20 -0.42 -0.53 0.53 0.108 0.108	50 8.62 10.03 1.77 1.05 -0.17 0.74 1.38 -0.08 -0.36 0.22 5.74 4.27 6.77 6.96 9.04	Side 60 5.02 10.07 12.19 13.64 14.25 9.63 9.78 13.65 12.88 12.75 12.31 4.15 13.89 13.10 12.67	lobe 70 4.58 10.10 10.13 6.33 8.07 13.17 8.21 15.32 11.96 10.26 11.95 11.16 12.79 12.43 11.61	level 80 4.60 10.37 7.60 5.81 5.86 3.78 10.59 12.84 6.78 10.68 12.84 10.68 12.84 12.84 12.84 12.84 12.84 12.84 12.84 12.15	90 4.61 10.25 7.88 5.54 4.74 11.30 2.90 12.53 11.43 9.17 11.72 11.72	in sp 100 4.68 10.21 8.63 5.09 5.84 5.57 4.92 4.49 6.37 11.68 11.70 4.61 11.13 11.64 12.05	Datial 120 4.78 10.25 9.02 4.91 4.50 3.95 3.74 3.70 9.83 5.59 10.27 10.31 10.92	mod 150 4.94 10.00 9.32 3.86 4.61 3.98 3.52 2.59 2.44 2.07 8.39 11.12 10.59 10.49 8.81	el op 200 4.80 9.87 10.00 3.40 3.51 3.30 3.17 2.56 2.24 2.04 3.02 11.92 10.99 10.39 3.20	timiza 300 5.45 9.99 9.59 3.77 3.55 2.89 3.00 2.45 2.53 2.53 2.53 1.44 7.11 9.78 5.46	attion 500 5.79 9.81 9.32 6.51 4.87 4.45 3.29 3.37 3.40 4.00 2.83 5.24	[dB] 700 5.75 8.85 10.56 7.46 5.97 5.01 4.76 4.74 4.21 3.360 3.36 3.51 3.42 2.01	1000 5.56 9.90 10.63 9.54 6.48 6.62 5.95 5.28 4.20 3.96 3.56 3.21 3.23 3.39 3.39 3.46	1500 5.03 9.42 8.02 7.03 6.29 6.20 6.21 6.26 4.51 4.46 4.26 2.67 2.51 3.26 3.37

Fig. 3 Average SDRi using 10 different initializations of (a) all 10 music, (b) Song 1, (c) Song 2, and (d) Song 3.

謝辞 本研究の一部は JSPS 科研費 19K20306 及び 19H01116 の助成を受けたものである.

参考文献

- H. Sawada, N. Ono, H. Kameoka, D. Kitamura, and H. Saruwatari, "A review of blind source separation methods: Two converging routes to ILRMA originating from ICA and NMF," APSIPA Trans. Signal and Info. Process., vol. 8, no. e12, pp. 1–14, 2019.
- [2] P. Smaragdis, "Blind separation of convolved mixtures in the frequency domain," *Neurocomputing*, vol. 22, pp. 21– 34, 1998.
- [3] H. Sawada, R. Mukai, S. Araki, and S. Makino, "A robust and precise method for solving the permutation problem of frequency-domain blind source separation," *IEEE Trans. SAP*, vol. 12, no. 5, pp. 530–538, Sep. 2004.
- [4] T. Kim, H. T. Attias, S.-Y. Lee, and T.-W. Lee, "Blind source separation exploiting higher-order frequency dependencies," *IEEE Trans. ASLP*, vol. 15, no. 1, pp. 70–79, 2007.
- [5] D. R. Hunter and K. Lange, "A tutorial on MM algorithms," *The American Statistician*, vol. 58, no. 1, pp. 30– 37, 2004.
- [6] N. Ono and S. Miyabe, "Auxiliary-function-based independent component analysis for super-Gaussian sources," *Proc. LVA/ICA*, pp. 165–172, 2010.
- [7] N. Ono, "Stable and fast update rules for independent vector analysis based on auxiliary function technique," *Proc.* WASPAA, pp. 189–192, 2011.
- [8] D. D. Lee and H. S. Seung, "Learning the parts of objects by non-negative matrix factorization," *Nature*, vol. 401, no. 6755, pp. 788–791, 1999.
- [9] D. Kitamura, N. Ono, H. Sawada, H. Kameoka, and H. Saruwatari, "Determined blind source separation unifying independent vector analysis and nonnegative matrix factorization," *IEEE/ACM Trans. ASLP*, vol. 24, no. 9, pp. 1626–1641, 2016.

- [10] D. Kitamura, N. Ono, H. Sawada, H. Kameoka, and H. Saruwatari, "Determined blind source separation with independent low-rank matrix analysis," in *Audio Source Separation*, S. Makino, Ed., pp. 125–155. Springer, Cham, 2018.
- [11] K. Yatabe and D. Kitamura, "Determined BSS based on time-frequency masking and its application to harmonic vector analysis," *IEEE/ACM Trans. ASLP*, vol. 29, pp. 1609–1625, 2021.
- [12] J. Le Roux and E. Vincent, "Consistent Wiener filtering for audio source separation," *IEEE Signal Process. Lett.*, vol. 20, no. 3, pp. 217–220, 2013.
- [13] K. Yatabe, "Consistent ICA: Determined BSS meets spectrogram consistency," *IEEE Signal Process. Lett.*, vol. 27, pp. 870–874, 2020.
 [14] D. Kitamura and K. Yatabe, "Consistent independent low-
- [14] D. Kitamura and K. Yatabe, "Consistent independent lowrank matrix analysis for determined blind source separation," *EURASIP J. Adv. Signal Process.*, vol. 2020, no. 46, 35 pages, 2020.
- [15] D. Kitamura, N. Ono, and H. Saruwatari, "Experimental analysis of optimal window length for independent low-rank matrix analysis," *Proc. EUSIPCO*, pp. 1210–1214, 2017.
- [16] S. Araki, R. Mukai, S. Makino, T. Nishikawa, and H. Saruwatari, "The fundamental limitation of frequency domain blind source separation for convolutive mixtures of speech," *IEEE Trans. SAP*, vol. 11, no. 2, 2003.
- [17] K. Matsuoka and S. Nakashima, "Minimal distortion principle for blind source separation," *Proc. ICA*, pp. 722–727, 2001.
- [18] S. Nakamura, K. Hiyane, F. Asano, T. Nishiura, and T. Yamada, "Acoustical sound database in real environments for sound scene understanding and hands-free speech recognition," *Proc. LREC*, pp. 965–968, 2000.
- [19] E. Vincent, R. Gribonval, and C. Févotte, "Performance measurement in blind audio source separation," *IEEE Trans. ASLP*, vol. 14, no. 4, pp. 1462–1469, 2006.
- [20] K. Yatabe, DGTtool. Zenodo, 2021, doi:10.5281/ZENODO.5010751.
- [21] 矢田部浩平,"短時間フーリエ変換および離散ガボール変換の MATLAB 実装について,"日本音響学会 2021 年秋季研究発表 会講演論文集, pp. 253–256, 2021.