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Abstract—Monitoring a driver’s health condition is essential
for advanced driver assistance systems. To detect the driver’s
health condition, we propose a new system using a contactless
biometric radar sensor to monitor the driver’s heart rate. The
radar sensor measures a microdisplacement of the driver’s body
surface, and heartbeat signals can be obtained. However, the
observed signals are contaminated by noise signals such as body
movement and car vibration. The proposed system utilizes blind
source separation algorithms and extracts the driver’s heartbeat
signal from the noisy observation. Furthermore, the estimated
heartbeat signal is input to a heart rate estimation algorithm. In
experiments, we built a vibration measurement system to simulate
a moving car, and an actual noisy heartbeat signal from a subject
sitting on a driver’s seat was measured. The results show that
the proposed system can accurately estimate the subject’s heart
rate by removing the noise signals.

I. INTRODUCTION

It is fatal for a driver to have a seizure or lose consciousness
while driving a car. Thus, monitoring the driver’s condition in
a car is a crucial issue. In this paper, to address this problem,
we propose a new system for measuring and estimating the
driver’s heart rate while driving a car. The proposed system
uses a contactless biometric radar sensor [1] (hereafter referred
to as a radar sensor), as shown in Fig. 1 (a). This radar sensor
can measure a microdisplacement of the driver’s body surface,
and signals originating from the heartbeat can be obtained.

To simulate a moving car condition, we built a vibration
measurement system depicted in Fig. 1 (b). The radar sensor
is embedded in the back of the driver’s seat so that the mi-
crodisplacement of the driver’s back is measured. Our objective
is to estimate the heart rate from the microdisplacement of the
body surface. However, the observed signal is contaminated by
enormous noise, mainly a car vibration. A vibration plate sim-
ulates this noise signal in our vibration measurement system,
where the plate vibrates in the vertical direction. In addition,
the driver’s breathing also causes a significant movement of
the body surface and appears in the observed signal.

This paper aims to improve the accuracy of heart rate
estimation using blind source separation (BSS) [2], [3]. BSS is
applied to the observed signals measured by the radar sensor
in the vibration measurement system and extracts the displace-
ment of the body surface derived from the driver’s heartbeat.
In particular, we apply independent vector analysis (IVA) [4],
[5], independent low-rank matrix analysis (ILRMA) [6], [7],
and ILRMA based on the complex Student’s t distribution (t-
ILRMA) [8], [9]. These algorithms have been well investigated

(a) Beams from radar sensor (b) Vibration system

Fig. 1. Vibration measurement system with the radar sensor
embedded in a back of seat.

in the field of audio BSS. We compare the precision of heart
rate estimation with these BSS algorithms.

II. OVERVIEWS OF VIBRATION MEASUREMENT SYSTEM
AND OBSERVED SIGNAL

A. Conditions for Vibration Measurement System

The vibration measurement system built for an experiment
is shown in Fig. 1 (b). In this system, the radar sensor is
embedded in the back of the seat, and the microdisplacement
of the subject’s back surface can be measured. We measured
for 420 s in total, and the vibration plate was operated only
in 60–360 s. The input signal to the vibration plate was a
sinusoidal wave with a 10 mm amplitude and 1.2 Hz frequency
towards the vertical direction, which simulates car movements
of idling or driving. The radar sensor emits millimeter waves
with four different directivities, as shown in Fig. 1 (a), and
receives the reflected waves. Thus, the microdisplacements of
four points can be simultaneously measured as a four-channel
signal. The sampling frequency of this radar sensor is 40 Hz.
In addition, a contact-type electrocardiograph (ECG) sensor
(hereafter referred to as an ECG sensor) is attached to the
subject’s chest and is operated on during the measurement. A
reference heart rate can be obtained by analyzing the ECG
sensor signal, which is used in the evaluation.

B. Observed Spectrograms of Radar and ECG Sensors

The spectrograms of the observed signals obtained by the
radar sensor (ch. 1) and the ECG sensor are shown in Fig. 2.
We can confirm that the observed signal of the radar sensor
contains components of not only heartbeat but also the vi-
bration plate noise, breathing motion, and background noise.
On the other hand, the ECG sensor captures the components of

978-616-590-477-3 ©2022 APSIPA APSIPA ASC 20221157



Proceedings of 2022 APSIPA Annual Summit and Conference 7-10 November 2022, Chiang Mai, Thailand

Fig. 2. Spectrograms of the observed signals obtained by the
radar sensor (left) and the ECG sensor (right).

the heartbeats with a high signal-to-noise ratio. This is because
the ECG sensor is a contact-type device and is attached to the
chest.

To extract only the heartbeat components from the radar
sensor signal, we apply a BSS technique and a heart rate
estimation algorithm. The accuracy of the estimated heart rates
is evaluated by comparing the reference heart rates calculated
from the ECG sensor signal.

III. BSS AND HEART RATE ESTIMATION ALGORITHM

This section presents BSS formulation in the time-frequency
domain and the algorithms of IVA, ILRMA, and t-ILRMA.
Also, an algorithm for estimating heart rate is described.

A. Formulation of BSS

As described in Sects. II-A and II-B, we assume that the
observed radar sensor signal consists of a four-channel time-
domain signal and is contaminated by some noise sources. Let
s̃ be the N source signals that include heartbeat and the other
N − 1 noise signals:

s̃[l] = [s̃1[l], s̃2[l], · · · , s̃n[l], · · · , s̃N [l]]T ∈ RN , (1)

where l = 1, 2, · · · , L and n = 1, 2, · · · , N are the indices of
the discrete-time samples and the source signals, respectively,
and ·T denotes the transpose. These source signals are mixed
and observed as an M channel signal x̃:

x̃[l] = [x̃1[l], x̃2[l], · · · , x̃m[l], · · · , x̃M [l]]T ∈ RM , (2)

where m = 1, 2, · · · ,M is the index of the channels. Estimated
(separated) signals are also defined as

ỹ[l] = [ỹ1[l], ỹ2[l], · · · , ỹn[l], · · · , ỹN [l]]T ∈ RN . (3)

In this paper, we assume N = M = 4. The assumption of
N = M is often called the determined condition [3], which is
necessary for the BSS techniques used in this paper.

To model the convolutive mixture in the time domain, we
transform the signals (1)–(3) into the time-frequency (spectro-
gram) domain via the short-time Fourier transform (STFT).

(a) Mixing model (b)Demixing model

Fig. 3. Mixing and demixing models (M = N = 2)

The source, observed, and estimated signals in the time-
frequency domain are defined as

sij = [sij1, sij2, · · · , sijn, · · · , sijN ]T ∈ CN , (4)

xij = [xij1, xij2, · · · , xijm, · · · , xijM ]T ∈ CM , (5)

yij = [yij1, yij2, · · · , yijn, · · · , yijN ]T ∈ CN , (6)

respectively, where i = 1, 2, · · · , I and j = 1, 2, · · · , J are
the indices of frequency bins and time frames. Note that sij
and yij are “multisource” signals, and xij is a “multichannel”
signal in each time-frequency slot. We also define the time-
frequency matrices (spectrograms) of (4)–(6) as Sn ∈ CI×J ,
Xm ∈ CI×J , and Yn ∈ CI×J , respectively.

In time-frequency domain BSS, the mixing system of the
sources is modeled by a time-invariant instantaneous mixture
in each frequency bin. This model can be represented as

xij = Aisij , (7)

where Ai ∈ CM×N is a frequency-wise mixing matrix. Then,
BSS estimates the inverse system of (7):

yij = Wixij , (8)

where Wi = [wi1 wi2 · · · wiN ]H ∈ CN×M is a frequency-
wise demixing matrix, which ideally coincides with Wi =
A−1

i under the determined condition, and ·H denotes the
Hermitian transpose.

The mixing and demixing systems (7) and (8) are depicted
in Fig. 3, where sjn, xjn, and yjn in this figure are the vectors
that consist of all the frequency components as

sjn = [s1jn, s2jn, · · · , sijn, · · · , sIjn]T ∈ CI , (9)

xjm = [x1jm, x2jm, · · · , xijm, · · · , xIjm]T ∈ CI , (10)

yjn = [y1jn, y2jn, · · · , yijn, · · · , yIjn]T ∈ CI . (11)

The algorithms of time-frequency domain BSS aim to estimate
the frequency-wise demixing matrix Wi from the multichannel
observed signal (X1,X2, · · · ,XM ) without any assumptions
about the mixing system Ai, e.g., positions of the sensors or
sources.

Since the radar sensor has four-channel directivities
(M = 4), the BSS algorithm outputs four estimated signals
(Y1, · · · ,Y4) that ideally correspond to one heartbeat signal
and three other noise sources. However, the order of the esti-
mated sources depends on the initial values of BSS parameters
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(a) IVA (b) ILRMA

Fig. 4. Source models assumed in IVA and ILRMA.

and an optimization algorithm. This paper treats the method for
selecting the estimated heartbeat signal from the four estimated
signals as future work. In all the experiments, we manually
select the estimated heartbeat signal by comparing BSS outputs
with the reference heartbeat signal obtained by the ECG sensor.

B. IVA

The first BSS algorithm applied in this paper is called
IVA [4], [5]. To estimate the demixing matrix Wi, IVA
assumes both “statistical independence between sources” and
“co-occurrence of all the frequency components in each
source” [4]. The co-occurrence assumption means that all the
components in sjn or yjn are assumed to have large powers
at the same time j, as depicted in Fig. 4 (a). This sourcewise
time-frequency model is valid in many sources to some extent.
For example, clear harmonic structures can be confirmed in the
heartbeat and vibration plate components in Fig. 2, resulting in
the co-occurrence of fundamental and harmonic frequencies.

In IVA, the estimation of Wi is formulated as the following
minimization problem [4]:

Minimize
W

−2J
∑
i

log |detWi|+
∑
j,n

∥yjn∥2, (12)

where W = {Wi}Ii=1 is the set of optimization parameters
and ∥ · ∥2 is the L2 norm, namely, ∥yjn∥2 =

√∑
i |yijn|2.

Although the closed-form solution of (12) has not been found,
an efficient iterative optimization algorithm was proposed,
which is called auxiliary-function-based IVA (AuxIVA) [5].
In AuxIVA, the following update rule for W is iteratively
calculated:

Gin =
1

J

∑
j

1√∑
i |wH

inxij |2
xijx

H
ij , (13)

win ← (WiGin)
−1en, (14)

win ← win(w
H
inGinwin)

− 1
2 , (15)

where en ∈ {0, 1}N denotes the unit vector with the nth
element equal to unity. The update rule (13)–(15) is called
iterative projection (IP) and guarantees a monotonic decrease
(or non-increasing) of the cost function (12). Thus, we can
obtain the estimated demixing matrix Wi by iterating (13)–
(15) until the value of (12) is converged.

C. ILRMA

The second BSS algorithm, ILRMA [6], [7], assumes the
independence and “low-rank time-frequency structure of each
source” instead of the co-occurrence assumption in IVA. This
assumption is depicted in Fig. 4 (b). The power spectrogram
of source signals, |Sn|.2 or |Yn|.2, is assumed to be well
approximated by a low-rank matrix, where the absolute and
dotted exponent for matrices represent entry-wise absolute
and exponent, respectively. Namely, the power spectrogram of
the same source includes many repetitions of similar spectral
patterns. For this low-rank modeling, ILRMA uses nonnegative
matrix factorization (NMF) [10].

Fig. 5 illustrates the BSS principle of ILRMA. The demixing
matrix Wi is updated so that the estimated power spectro-
grams |Yn|.2 have a low-rank time-frequency structure and
are modeled by NMF. During the low-rank modeling, NMF
enhances the components of one source and reduces the other
source components, which facilitates the separation in the
optimization of Wi.

As shown in Fig. 2, the components of both the heartbeat
and the vibration plate have repetitions of harmonic spectral
patterns along with the time frames. Thus, the low-rank source
model in ILRMA (Fig. 4 (b)) has the potential to precisely
represent the time-frequency structures of each source, and
more accurate BSS can be achieved compared with IVA in
many cases.

In ILRMA, the optimization of parameters is formulated as

Minimize
W,T,V

− 2J
∑
i

log |detWi|+
∑
n

D
(
|Yn|.2|TnVn

)
,

(16)

where T = {Tn}Nn=1 and V = {Vn}Nn=1 are the sets of
NMF variables Tn ∈ RI×K

≥0 and Vn ∈ RK×J
≥0 , respectively,

which are often called basis and activation matrices in the
context of NMF [6], [7]. They model the power spectrogram
of the estimated signals as |Yn|.2 ≈ TnVn (see Fig. 5).
Furthermore, D(·|·) is the sum of the entrywise Itakura–Saito
divergence [10] between the input matrices, and K ∈ N is the
number of NMF basis vectors. The parameters in ILRMA, W,
T, and V, can be optimized by iterating the following update
rules:

tikn ← tikn

√√√√∑j |wH
inxij |2vkjn (

∑
k′ tik′nvk′jn)

−2∑
j vkjn (

∑
k′ tik′nvk′jn)

−1 , (17)

vkjn ← vkjn

√∑
i |wH

inxij |2tikn (
∑

k′ tik′nvk′jn)
−2∑

i tikn (
∑

k′ tik′nvk′jn)
−1 , (18)

Uin =
1

J

∑
j

1∑
k tiknvkjn

xijx
H
ij , (19)

win ← (WiUin)
−1en, (20)

win ← win(w
H
inUinwin)

− 1
2 , (21)

where tikn and vkjn are the elements of Tn and Vn, respec-
tively, and k = 1, 2, · · · ,K is the index of the basis vectors.
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Fig. 5. BSS principle of ILRMA.

Similar to IP in AuxIVA, this iterative optimization algorithm
also guarantees a monotonic decrease of the cost function (16).

D. t-ILRMA

The third BSS is an extension of ILRMA, which is called
t-ILRMA [8], [9]. ILRMA uses NMF based on the Itakura–
Saito divergence (ISNMF). In ISNMF, the time-frequency
components of source signals are assumed to follow the zero-
mean isotropic complex Gaussian distribution [10], namely,

yijn ∼ NC(yijn; 0, σ
2
ijn), (22)

NC(c;µ, σ
2) =

1

πσ2
exp

(
−|c− µ|2

σ2

)
, (23)

σ2
ijn =

∑
k

tiknvkjn, (24)

where µ ∈ C and σ2 > 0 are the mean and variance of the
isotropic complex Gaussian distribution NC(c;µ, σ

2) and c ∈
C is a random variable. ISNMF in ILRMA decomposes the
power spectrogram (time-frequency variance σ2

ijn) based on
the generative model (22).

The generative model (22) can be extended by using the
isotropic complex Student’s t distribution, which is called t-
NMF [11], [12], as

yijn ∼ TC(yijn; 0, σ2
ijn, ν), (25)

TC(c;µ, σ2, ν) =
1

πσ2

(
1 +

2

ν

|c− µ|2

σ2

)− 2+ν
2

, (26)

σp
ijn =

∑
k

tiknvkjn, (27)

where ν > 0 is a degree-of-freedom parameter. Note that (24)
is also generalized to (27) by introducing the domain parameter
p > 0, i.e., |Yn|.p ≈ TnVn. If we set ν → ∞ and p =
2, (25) converges to (22). Thus, t-NMF is interpreted as a
generalization of ISNMF.

It has been reported that t-NMF performs better than
ISNMF in specific NMF-based tasks, such as sparse noise
reduction [12] and multichannel audio BSS [13]. t-NMF tends
to ignore components that do not contribute to low-rank mod-
eling, such as sparse outliers, and focuses on capturing truly
low-rank structures in the mixture. This property is enhanced
when we set ν to a small value. t-ILRMA utilizes this nature by
replacing ISNMF in ILRMA with t-NMF [8], [9]. Therefore, if
the sources in Fig. 2 (left) have a truly low-rank structure (but

are contaminated by background noise), t-ILRMA provides
better separation performance than standard ILRMA.

The parameter optimization in t-ILRMA is formulated as

Minimize
W,T,V

− 2J
∑
i

log |det Wi|

+
∑
i,j,n

[(
1 +

ν

2

)
log

(
1 +

2

ν

|wH
inxij |2

zijn

)

+
2

p
log
∑
k

tiknvkjn

]
, (28)

Similar to ILRMA, the minimization problem (28) can be
solved by iterating the following update rules:

tikn ← tikn

∑j
|wH

inxij |2
bijn

∑
k′ tik′nvk′jn

vkjn∑
j

1∑
k′ tik′nvk′jn

vkjn


p

p+2

, (29)

vkjn ← vkjn

∑i
|wH

inxij |2
bijn

∑
k′ tik′nvk′jn

tikn∑
i

1∑
k′ tik′nvk′jn

tikn


p

p+2

, (30)

Uin =
1

J

(
1 +

2

ν

)∑
j

1

zijn (
∑

k tiknvkjn)
2
p

xijx
H
ij , (31)

win ← (WiUin)
−1

en, (32)

win ←
win√

wH
inUinwin

, (33)

where

bijn =
ν

ν + 2

(∑
k′

tik′nvk′jn

) 2
p

+
2

ν + 2
|wH

inxij |2, (34)

zijn = 1 +
2

ν

|wH
inxij |2

(
∑

k tiknvkjn)
2
p

. (35)

The monotonic decrease of the cost function (28) is guaran-
teed.

E. Algorithm of Heart Rate Estimation

After applying BSS to the observed radar sensor signal, we
obtain the spectrogram of the estimated heartbeat signal. Let
ỹHB[l] be the estimated heartbeat signal in the time domain,
calculated via an inverse STFT.

A popular method to calculate heart rates from the heartbeat
signal is to detect a QRS peak (a spiky waveform that
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Fig. 6. Process flow of the heart rate estimation algorithm.

appears in the heartbeat signal) using, e.g., the Pan–Tompkins
algorithm [14]. Since an interbeat interval corresponds to
a fundamental period of the heartbeat, the heart rate can
be estimated. However, this approach is designed for ECG
sensor signals that clearly include the QRS peak. Since the
heartbeat signal estimated by BSS, ỹHB[l], does not include
clear QRS peaks, in this paper, we apply a heart rate estimation
algorithm summarized in Fig. 6. In this algorithm, a band-
pass filter enhances the harmonic structure in ỹHB[l] while the
low-frequency components are removed. The signal is then
converted to a spectrogram using STFT, and the contours of
the spectral peaks are estimated. Finally, the heart rate for each
time frame is obtained from the estimated contours.

IV. EXPERIMENTS

A. Preprocess for Eliminating Breathing Components

As shown in Fig. 2 (left), the components of the breathing
motion tend to be strongly measured by the radar sensor.
These components often degrade the accuracy of heart rate
estimation.

To solve this problem, we reduced the low-frequency energy
using a high-pass filter before applying the BSS algorithm.
The amplitude and phase responses of the high-pass filter are
shown in Fig. 7. The filter was designed as 170th-order finite
impulse response, and its cutoff frequency was set to 1.5 Hz.
After applying this filter to all channels, x̃1[l], · · · , x̃4[l], we
input them to BSS. Although the fundamental frequency of
the heartbeat may also be reduced by the high-pass filter, the
algorithm described in Sect. III-E can predict accurate heart
rates due to the processes shown in Fig. 6.

B. Experimental Conditions of BSS algorithms

To confirm the best BSS algorithm for radar sensor signals,
we applied three BSS algorithms, IVA, ILRMA, and t-ILRMA,
to reduce the noise components. The spectrograms of the high-
pass-filtered signals were calculated via STFT, where a 1.6-s-
long hamming window with 0.1-s-long shifting was used1.

The number of iterations of each BSS algorithm was set to
100. The initial values of the demixing matrix Wi were set to
the identity matrix for all frequencies. Also, the initial values

1This STFT setting is different from that showing Figs. 2 and 8–11. The
spectrograms of Figs. 2 and 8–11 are calculated by STFT with a 25.6-s-long
hamming window with 0.8-s-long shifting for the visibility of components in
the signal.

Fig. 7. Amplitude response (left axis) and phase response
(right axis) of the high-pass filter used in the preprocessing
of observed signals.

of the NMF matrices Tn and Vn in ILRMA and t-ILRMA
were set to uniformly random values in the range (0, 1), and
the number of NMF bases was set to K = 3. For t-ILRMA,
we set p = 1 (amplitude domain) and ν = 5.

C. Experimental Results

Fig. 8 shows the spectrograms of the observed radar sensor
signals, where the high-pass filter is applied. As we discussed
in Sect. II-B, the heartbeat components are contaminated by
noise. The spectrograms of the signals estimated by IVA,
ILRMA, and t-ILRMA are shown in Figs. 9, 10, and 11,
respectively. In all cases, the third estimated signal corresponds
to the heartbeat signal. From these results, we can confirm the
following points:

• The vibration plate and background noise components
tend to split into several estimated signals (the first,
second, and fourth signals in Figs. 9, 10, and 11).

• All BSS algorithms can extract only the heartbeat com-
ponents from the observed signal, although their accuracy
is different.

• In the IVA results (Fig. 9), some residual components
of the vibration plate can be confirmed at around 3.6 Hz.
This estimation error is mitigated in the results of ILRMA
and t-ILRMA (Figs. 10 and 11).

• In the ILRMA results (Fig. 10), some components of the
heartbeat at 200–400 s are split into the second signal,
which is not confirmed in the result of t-ILRMA (Fig. 11).
This difference will affect to the estimation accuracy of
heart rates.

From these results, we expect that t-ILRMA will provide the
best performance for the heart rate estimation.

Fig. 12 shows the results of the heart rate estimation algo-
rithm, where the estimated heartbeat signals obtained by each
of IVA, ILRMA, and t-ILRMA (the third signals in Figs. 9, 10,
and 11) were input, respectively. In addition, estimated heart
rates using the ECG sensor signal are shown as a reference for
estimation. The IVA-based result (Fig. 12 (a)) includes some
errors, particularly at 60–160 s. The results of ILRMA and
t-ILRMA show a comparable accuracy of estimation, but the
result of t-ILRMA is slightly better. These results show the
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Fig. 8. Four-channel spectrograms of the observed radar sensor signal after applying the high-pass filter.

Fig. 9. Spectrograms of the estimated signals obtained by IVA.

Fig. 10. Spectrograms of the estimated signals obtained by ILRMA.
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Fig. 11. Spectrograms of the estimated signals obtained by t-ILRMA.

Fig. 12. Estimated (red) and reference (blue) heart rates obtained by BSS algorithms.

validity of the proposed unification of the radar sensor and the
BSS algorithms to estimate the driver’s heart rate.

V. CONCLUSION

This paper proposed a new system to monitor the driver’s
heart rate. The unification of radar sensors and BSS algorithms
was proposed. We conducted a car-simulated experiment using
the vibration plate, and the actually observed signals were
analyzed using the proposed system. The experimental result
confirmed that ILRMA and t-ILRMA could improve the
accuracy of estimating the driver’s heart rate by reducing the
noise components.

In future work, we will evaluate heart rate estimation
accuracy using a quantitative criterion and various conditions
of observed signals. In addition, actual car-driving noise is
measured and used to simulate more realistic observed signals.
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