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ABSTRACT

Determined blind source separation (BSS) extracts the source sig-

nals by linear multichannel filtering. Its performance depends on the

accuracy of source modeling, and hence existing BSS methods have

proposed several source models. Recently, a new determined BSS al-

gorithm that incorporates a time-frequency mask has been proposed.

It enables very flexible source modeling because the model is im-

plicitly defined by a mask-generating function. Building up on this

framework, in this paper, we propose a unification of determined

BSS and harmonic/percussive sound separation (HPSS). HPSS is an

important preprocessing for musical applications. By incorporating

HPSS, both harmonic and percussive instruments can be accurately

modeled for determined BSS. The resultant algorithm estimates the

demixing filter using the information obtained by an HPSS method.

We also propose a stabilization method that is essential for the pro-

posed algorithm. Our experiments showed that the proposed method

outperformed both HPSS and determined BSS methods including

independent low-rank matrix analysis.

Index Terms— Determined blind source separation (BSS), har-

monic/percussive sound separation (HPSS), time-frequency mask-

ing, mask stabilization, plug-and-play scheme.

1. INTRODUCTION

Blind source separation (BSS) is a technique for separating indi-

vidual sources from an observed mixture without any prior knowl-

edge on the mixing system such as the positions of microphones and

source signals. In the (over-)determined situation (the number of mi-

crophones is greater than or equal to the number of sources), several

determined BSS algorithms have been developed based on the as-

sumption of statistical independence between the sources, e.g., the

frequency-domain independent component analysis (FDICA) [1–3],

the independent vector analysis (IVA) [4–6], and the independent

low-rank matrix analysis (ILRMA) [7, 8]. This paper focuses on

such a determined BSS algorithm.

Recently, a new class of determined BSS algorithms, which we

call the time-frequency-masking-based BSS (TFMBSS), has been

proposed [9]. Since source modeling is the key to success, TFMBSS

aims at integrating a source model that has not been utilized in deter-

mined BSS. To give some examples of conventional source model-

ing, IVA models co-occurrence among the frequency components of

each source, and ILRMA models co-occurrence among the compo-

nents via the low-rank time-frequency structure of the source signals.

These BSS methods have proposed such sophisticated source models

because the performance of BSS can be improved by a better model.

TFMBSS generalized a source model to a general time-frequency

mask so that it extends the class of source models to a wider one.
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Some new models have successfully obtained well-performing BSS

algorithms using TFMBSS [9,10], and this strategy has capability of

further improvement by discovering a better model. In particular, an

application-specific source model should be promising.

Harmonic/percussive sound separation (HPSS) [11–15] is one

application that requires specific modeling of source signals. Har-

monic and percussive instruments have very different roles in mu-

sic, and hence separating them is crucial for many applications in-

cluding music analysis (estimation of chords, tempo, rhythm, notes,

genre, etc.) and remixing. HPSS separates them by modeling their

distinct spectral structures (i.e., smoothness of magnitude spectro-

grams along time or frequency axes). This is a concept that does

not exist in the conventional determined BSS methods handling all

source signals by the same source model. Combination of HPSS and

determined BSS should be possible to realize a high-quality HPSS

method for multichannel observation because determined BSS per-

forms linear filtering that do not cause nonlinear distortion. How-

ever, such combination has not been proposed yet owing to the diffi-

culty of integrating the source models of HPSS into the conventional

BSS methods.

In this paper, by taking full advantage of the modeling capabil-

ity of TFMBSS, we propose a multichannel HPSS method for spa-

tially mixed harmonic and percussive instruments. The proposed

method incorporates a single-channel HPSS method into the itera-

tion of TFMBSS so that the demixing filter is informed by the HPSS

method. A stabilization technique that is essential for the proposed

method is also developed in order to safely update the parameters.

By the experiments, it was shown that the proposed method outper-

formed both HPSS and determined BSS methods.

2. PRELIMINARIES

2.1. Harmonic/percussive sound separation (HPSS)

HPSS [11–15] is a method for separating harmonic and percussive

sources based on the source models adapted for their distinct spec-

tral patterns: the spectrograms of harmonic and percussive sources

have time- and frequency-continuous structures, respectively. Let

B ∈ C
I×J be the complex-valued spectrogram of the observed sig-

nal. From this monaural mixture, HPSS in [12, 13] separates the

harmonic and percussive components, H ∈ C
I×J and P ∈ C

I×J ,

respectively, by solving the following optimization problem:

min
H,P

J (H,P ) s.t. |B|ξ = |H|ξ + |P |ξ, (1)

where | · | represents the element-wise absolute value,

J (H,P ) =
∑

i,j

[
κH

(
|hi(j+1)|

ρ − |hij |
ρ
)2

+κP

(
|p(i+1)j |

ρ − |pij |
ρ
)2]

, (2)



ξ and ρ are the domain parameters, hij and pij are the elements of

H and P , respectively, and κH > 0 and κP > 0 are the weight

coefficients for each term. The experiment in [13] confirmed that

ξ = 2ρ = 1 provides a better separation performance. For ξ = 2ρ,

(1) can be minimized by iterating the following update rules: [12,13]

|hij |
2ρ =

cij |bij |
2ρ

cij + dij
, |pij |

2ρ =
dij |bij |

2ρ

cij + dij
, (3)

cij = κ2
H

(
|h(i+1)j |

ρ + |h(i−1)j |
ρ
)2

, (4)

dij = κ2
P

(
|pi(j+1)|

ρ + |pi(j−1)|
ρ
)2

, (5)

where bij is the element of B.

2.2. Determined blind source separation (BSS)

The determined BSS aims at separating each source from an ob-

served multichannel mixture. Let the numbers of sources and micro-

phones be denoted by N and M , respectively. The source, observed,

and estimated (separated) signals obtained via the short-time Fourier

transform (STFT) are respectively denoted as

sij = [sij1, sij2, · · · , sijn, · · · , sijN ]T ∈ C
N , (6)

xij = [xij1, xij2, · · · , xijm, · · · , xijM ]T ∈ C
M , (7)

yij = [yij1, yij2, · · · , yijn, · · · , yijN ]T ∈ C
N , (8)

where i= 1, 2, · · · , I , j = 1, 2, · · · , J , n= 1, 2, · · · , N , and m=
1, 2, · · · ,M are the indices of frequency bins, time frames, sources,

and microphones (channels), respectively, and ·T denotes the trans-

pose. We also denote the complex-valued spectrogram of the mth

observed signals in (7) as Xm∈C
I×J , whose elements are xijm.

We assume the linear time-invariant mixing system as

xij = Aisij , (9)

where Ai ∈ C
M×N is a frequency-wise mixing matrix, which de-

pends on the mixing condition, such as locations of sources and mi-

crophones. This mixing model holds when the reverberation time is

sufficiently shorter than the window length used in STFT. If M = N
and Ai is invertible, the estimated signals can be obtained by multi-

plying a demixing matrix Wi ≈ A−1
i ∈ C

N×M as

yij = Wixij . (10)

Since (10) is equivalent to linear filtering, artificial distortion in the

estimated signals yij are minimized compared to those obtained by

nonlinear separation techniques, such as deep neural networks and

single-channel source separation. This is a strong motivation of ap-

plying multichannel determined BSS. For this reason, in this paper,

we only focus on the determined case M = N = 2 (harmonic and

percussive sources). For the case M > N , a dimensionality reduc-

tion method can be utilized to set M = N .

2.3. Time-frequency-masking-based BSS (TFMBSS)

To blindly estimate a demixing matrix Wi in (10), TFMBSS has

been proposed in [9] as a new determined BSS framework. It gener-

alized a BSS algorithm in [16] that is based on a proximal splitting

algorithm [17–20]. The important feature of TFMBSS is that the

source model for determined BSS is implicitly defined via a time-

frequency mask. Therefore, this algorithm enables collaboration of

determined BSS with a time-frequency masking method.

Algorithm 1 TFMBSS [9, 10]

Input: X , w[1], y[1], µ1, µ2, α
Output: w

[K+1]

1: for k = 1, · · · ,K do

2: w̃ = proxµ1I

[
w

[k] − µ1µ2X
H
y
[k]
]

3: z = y
[k] +X(2w̃ −w

[k])

4: M = generateMask(z)

5: ỹ = z−M⊙ z

6: y
[k+1] = αỹ + (1− α)y[k]

7: w
[k+1] = αw̃ + (1− α)w[k]

8: end for

Let w be a vectorized form of the demixing matrices (Wi)
I
i=1,

and X be the corresponding matrix composed of the observed spec-

trograms (Xm)Mm=1, so that, for all i, j, (10) can be compactly writ-

ten as y = Xw. By this vectorization and matricization, TFMBSS

is given as in Algorithm 1, where ⊙ is the element-wise product,

proxµ1I
is the singular-value operation defined in [16], and µ1, µ2

and α are easily determined step-size parameters (see [10] for details

of the algorithm). The function generateMask(·) in the fourth line

generates a time-frequency mask M. When this mask enhances the

source signals, the TFMBSS algorithm works as if the enhanced sig-

nals are obtained by the source models utilized for determined BSS.

In other words, the source model of determined BSS is implicitly de-

fined through the mask. Any mask aiming at the target signals can be

inserted into TFMBSS, and hence the problem of source modeling

is reduced to design of a mask-generating function.

3. PROPOSED METHOD

3.1. Motivation

The single-channel HPSS as in Section 2.1 is frequently used as a

preprocessing for music analysis. However, due to the nonlinear sep-

aration mechanism, the separated harmonic and percussive sounds

are contaminated by artificial distortions, e.g., musical noise. Such

distortions can be harmful for the following process and degrade the

artistic value of music signals. In contrast, the linear spatial separa-

tion (10) can minimize the distortion in the separated signals. Hence,

combination with determined BSS should be valuable for HPSS.

To achieve distortion-less separation of harmonic and percus-

sive instruments, we propose a unification of single-channel HPSS

and determined BSS. The proposed method is based on TFMBSS

whose source model is implicitly defined via HPSS. At each iter-

ation of TFMBSS, HPSS is performed for updating the mask M.

Then, TFMBSS updates the demixing filter w based on the mask.

To reduce instability of mask generation, we also propose a mask-

smoothing process that is essential for the proposed method. This

smoothing process can stabilize the update of demixing filter, result-

ing in better estimation of the separated signals.

3.2. Determined BSS algorithm based on HPSS

A block diagram of the proposed algorithm is shown in Fig. 1. As

usual in determined BSS, the observed signal is firstly converted by

STFT. Then, a BSS algorithm is applied to estimate the demixing

filter. After separation by (10), the back projection technique [23,24]

is applied, and the inverse STFT gives the separated signals.

In the proposed method, HPSS is utilized as a mask-generating

function in the fourth line of Algorithm 1. Below, we explain this

process, from input z to output M, in a step-by-step manner.
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Fig. 1. Block diagram of the proposed method.

Firstly, the input auxiliary variable z ∈ C
2IJ is split into two

matrices, ZH ∈ C
I×J and ZP ∈ C

I×J . Note that this splitting is

merely reshaping of the variable, and no processing is applied. The

half of z is always assigned to ZH , and the other half is assigned to

ZP for every iteration. Then, the back projection technique [23, 24]

is applied to each of them in order to fix the frequency-wise scales.

This scale alignment is crucial for HPSS to work properly.

Secondly, two independent HPSS processes are performed.

Each HPSS is initialized by ZH and ZP as follows:

|B(H)|ξ = |ZH |ξ, |H(H)| = |P (H)| = |ZH |ξ/2, (11)

|B(P )|ξ = |ZP |
ξ, |H(P )| = |P (P )| = |ZP |

ξ/2, (12)

where the HPSS for ZH is performed with B(H), H(H) and P (H),

and that for ZP is performed with B(P ), H(P ) and P (P ). By it-

erating the update rules in (3)–(5), two pairs of separated signals

are obtained: |H(H)|2ρ and |P (H)|2ρ are separated from ZH , and

|H(P )|2ρ and |P (P )|2ρ are separated from ZP .

Thirdly, two Wiener-like masks [10], MH and MP , are con-

structed using the results of HPSS as follows:

MH =
|H(H)|2

|H(H)|2 + |P (H)|2
, MP =

|P (P )|2

|H(P )|2 + |P (P )|2
, (13)

where all the operations are performed element-wise. These masks

enhance the harmonic or percussive components by eliminating the

other components. Therefore, the demixing filter is informed about

which component to reduce.

Finally, these masks MH ∈ [0, 1]I×J and MP ∈ [0, 1]I×J are

concatenated and vectorized to form a mask M ∈ [0, 1]2IJ that can

be applied to z ∈ C
2IJ as in the fifth line of Algorithm 1. These four

steps define the function generateMask(·), which maps z to M, for

the proposed method. Note that the quality of masks depend on the

degree of success of HPSS. Since HPSS may fail to correctly sep-

arate the signals, we additionally propose a stabilization technique

that is separately explained in the next subsection.

3.3. Mask smoothing technique for TFMBSS

Since TFMBSS is built upon a proximal algorithm [10], its update

should stay in the proximity of the previous state. However, a mask-

generating function may violate this requirement, which makes the

Table 1. Experimental conditions

Window function in STFT Hann window

Window length in STFT 128 ms

Shift length in STFT 64 ms

Parameters in HPSS
κH = 1.02, κP = 1.01

ξ = 2, ρ = 1

Parameters in TFMBSS
α = 0.25

µ1 = µ2 = 1.0
Number of iterations in TFMBSS 500

algorithm unstable. To stabilize the algorithm regardless of the

choice of mask-generating function, we propose a mask smoothing

technique for TFMBSS.

The algorithm can be stabilized by avoiding huge difference be-

tween the current and previous masks. Therefore, we propose the

following smoothing rule that is independently applied to MH and

MP right after the calculation of these masks in (13):

M = Mβ ⊙Mold
βold (14)

where Mold is the mask obtained in the previous iterate, and β ≥ 0
and βold ≥ 0 are the smoothing parameters such that β + βold =
1. The degree of smoothness is decided by this parameter. When

βold = 0 (i.e., β = 1), (14) does nothing to the current mask. By

increasing βold toward 1, the smoothing effect becomes stronger.

The effect of this smoothing will be discussed via an experiment.

Note that the applicability of this smoothing technique is not

limited to the proposed method. It can be applied to any BSS method

based on TFMBSS. Therefore, it should be beneficial for TFMBSS-

based algorithms already proposed in the literature [9, 10].

4. EXPERIMENTS

4.1. Conditions

We conducted experiments of separating drums and other musical

instruments. For the testing data, “drums” and “other” sources of 20

songs in the SiSEC 2016 MUS dataset [25] were used. To produce

multichannel observed signals, these dry sources were convolved

with the impulse response “E2A” in the RWCP database [26] (re-

verberation time was 300 ms) with 5.66 cm microphone spacing and

source orientations of 50◦&130◦ (90◦ corresponds to the normal di-

rection of the two microphones), as in [27]. The improvement of

source-to-distortion ratio (SDR) [28] was used as an evaluation score

because it is in good agreement with both degree of separation and

absence of artificial noise. The other experimental conditions are

summarized in Table 1.

4.2. Effect of numbers of iterations in HPSS

The number of HPSS iterations (3)–(5) affects the separation perfor-

mance of the proposed method. Here, we compare the performance

of the proposed method with various numbers of iterations in HPSS.

Table 2 shows the SDR improvements of the proposed method av-

eraged over harmonic and percussive sources and 20 songs, where

the smoothing parameters were set to β = 0.25 and βold = 0.75.

Since the update rules (3)–(5) of HPSS rapidly converges to a local

minimum of (1), the performance of the proposed method saturates

when the number of iterations in HPSS is set to around 15. On the

basis of this result, we set the number of iterations of HPSS for the

proposed method to 15 in the following experiments.



Table 2. Average SDR improvements of the proposed method with

various numbers of iterations in HPSS

Number of iterations Average SDR

in HPSS improvement [dB]

1 8.29

3 10.40

5 10.87

7 10.98

9 11.08

11 10.79

13 11.09

15 11.29

20 11.06
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Fig. 2. Typical example of convergence behaviors in the proposed

method with various β and βold.

Table 3. Average SDR improvements of the proposed method with

various smoothing parameters β and βold

β βold Average SDR improvement [dB]

1 0 7.40

0.5 0.5 10.14

0.25 0.75 11.29

0.125 0.875 11.27

0.0625 0.9375 11.01

4.3. Effect of smoothing parameters

Here, we investigate the effect of the proposed mask-smoothing

technique in Section 3.3. A typical example of the convergence

behaviors of SDR improvements averaged over harmonic and per-

cussive sources is shown in Fig. 2. Note that β = 1 − βold, and

βold = 0 corresponds to the algorithm without the smoothing tech-

nique. From this figure, we can confirm that the smoothing process

clearly stabilizes the proposed algorithm. This tendency was the

same for the other songs.

As in the figure, there is a trade-off between stability and conver-

gence speed. Therefore, for a fixed number of iterations, the smooth-

ing parameter should affect the separation performance. Table 3

summarizes the SDR improvements averaged over 20 songs. This

table shows that excess amount of smoothing results in degradation

of performance. A preferable condition of the smoothing process

seems around β = 0.25 or 0.125 for the proposed method. The

comparison in the next subsection is made by β = 0.25.

4.4. Comparison with existing HPSS and BSS algorithms

We compared five methods: (a) single-channel HPSS [12, 13], (b)

multichannel HPSS [21], (c) IVA based on the auxiliary function

Table 4. Conditions for other HPSS and BSS algorithms

Parameters for multichannel
128 ms Hann window with 1/2 shift

HPSS described in [21]
αh=αp=10, mh=mp=5

γ1=0.5, γ2=1

Fine-tuned parameters
16 ms Hann window with 1/2 shift

for multichannel HPSS
αh=αp=5, mh=mp=10

γ1=γ2=1
Number of bases in ILRMA 10 for each source

20 for single-channel HPSS

Number of iterations
15 for multichannel HPSS

30 for AuxIVA

100 for ILRMA

Table 5. Average SDR improvement for HPSS and BSS algorithms

HPSS/BSS algorithm
Average SDR

improvement [dB]

Single-channel HPSS 4.80

Multichannel HPSS with
-0.47

the parameters in [21]

Multichannel HPSS with
1.25

the fine-tuned parameters

AuxIVA 7.91

ILRMA 7.76

Proposed method 11.29

technique (AuxIVA) [6], (d) ILRMA [7, 8], and (e) the proposed

method. For the multichannel HPSS, we used the MATLAB imple-

mentation1 provided by the authors of [21], where two conditions

of parameters (given and fine-tuned) were used as shown in Table 4

(see [21] for details of these parameters). For single-channel HPSS,

AuxIVA, ILRMA, and the proposed method, we used 128-ms-long

Hann window with half shifting. The other conditions for the con-

ventional methods are summarized in Table 4.

Table 5 shows the average SDR improvements for all the meth-

ods. In this experiment, the single-channel HPSS outperformed the

multichannel one. While multichannel HPSS can reduce the artifi-

cial distortions in the estimated signals using spatial information, the

degree of separation tends to be sacrificed. Also, multichannel HPSS

aims to separate the typical stereo music with panning mixtures.

Although the spatial covariance model [29] in multichannel HPSS

can handle the convolutive mixture (9), its parameter optimization

was unstable and the performance was not high in this experiment.

AuxIVA and ILRMA provide better performance compared to the

conventional HPSS methods. This is because the source models as-

sumed in IVA and ILRMA work well for modeling the drums and

instrumental signals. The proposed method outperformed the other

HPSS and BSS techniques because the suitable source models for

separating the harmonic and percussive sources are utilized.

5. CONCLUSION

In this paper, a new algorithm that unifies TFMBSS and HPSS-based

time-frequency mask estimation was proposed. Also, we revealed

the importance of the mask-smoothing process to greatly improve

the performance of TFMBSS. The proposed method outperformed

the conventional HPSS-based and FDICA-based techniques.

The utilization of another time-frequency mask is our future

work. We expect that the proposed mask-smoothing technique is

useful even in such applications with various time-frequency masks.

1Retrieved from https://www.irisa.fr/metiss/ngoc/sw/hpss.rar
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