スペクトログラム無矛盾性を用いた独立低ランク行列分析の実験的評価*

〇北村大地(香川高専),矢田部浩平(早稲田大)

1 はじめに

ブラインド音源分離(blind source separation: BSS)[1]は,混合系が未知の条件下で,複数の音源 が混合した観測信号から混合前の音源信号を推定す る技術である.BSS は音声認識精度向上や音楽信号 解析等,様々な技術に応用されている.

音源数以上のマイクロホンで録音して得られる多 チャネル観測信号を対象とする BSS (優決定条件 BSS) は、音源間の統計モデルを活用した1994年の独立成分 分析 (independent component analysis: ICA) [2] の 登場以降盛んに研究されている. 1998年に周波数領域 ICA (frequency-domain ICA: FDICA) [3] が提案さ れ、その後は FDICA で得られる周波数毎の分離信号 の順番を適切に並び替えるパーミュテーション問題の 解決が検討された [4, 5, 6]. 2006 年には, 音源の周波 数構造を仮定した音源モデルを FDICA に導入するこ とで、パーミュテーション問題を回避しながら分離信 号を推定する独立ベクトル分析 (independent vector analysis: IVA) [7,8] が提案された. 2011 年には、補助 関数法 [9] 及び反復射影法(iterative projection: IP) [10] に基づく安定・高速な IVA(auxiliary-functionbased IVA: AuxIVA) [11] が登場し, 優決定条件 BSS におけるパーミュテーション問題のエレガントな回避 法が,モデルと最適化の両観点から確立された.

パーミュテーション問題回避のために何らかの音 源モデルを導入する IVA のアイデアは画期的であり, 様々な音源モデルの導入へと発展した.例えば,非負 値行列因子分解 (nonnegative matrix factorization: NMF) [12] に基づく低ランク時間周波数構造を仮定 する独立低ランク行列分析 (independent low-rank matrix analysis: ILRMA) [13, 14], 学習データから 音源モデルを深層学習する独立深層学習行列分析 [15] 等が提案されている.また,これらの音源モデルを plug-and-play で変更可能な最適化アルゴリズムを採 用した BSS [16, 17] も提案されている.

一方,時間周波数領域におけるスペクトログラム無 矛盾性 [18, 19] と呼ばれる性質を FDICA 及び IVA に 導入した BSS が近年提案された [20]. スペクトログラ ムは通常,短時間フーリエ変換(short-time Fourier transform: STFT) における窓関数とそのオーバー ラップの影響によって, 近傍時間周波数グリッドに共 起関係を持つ.スペクトログラムに対して BSS 等の 信号処理を施した場合、この共起関係が崩されるこ とにより、矛盾したスペクトログラムが生成される. このようなスペクトログラムの矛盾・無矛盾性に基づ いて,最適化の過程で無矛盾性を担保しパーミュテー ション問題をある程度回避する手法がスペクトログ ラム無矛盾性に基づく BSS である. 著者らはこれを ILRMA に適用し、スペクトログラム無矛盾性に基づ く ILRMA (consistent ILRMA) [21, 22] を提案し ている.

本稿では、consistent ILRMA の実験的評価として、 最適化の毎反復における分離信号のスケール補正(プ ロジェクションバック法(back projection: BP)[23]) の有無が性能に与える影響を新たに明らかにする.な お,実験に用いた ILRMA 及び consistent ILRMA の MATLAB コードを GitHub (https://github.com/dkitamura/ILRMA) にて公開しているため,文献 [22] と合わせて参照されたい.

2 Consistent ILRMA

2.1 定式化と優決定条件 BSS

離散時間信号の *l* 番目のサンプルを *x*[*l*] と表記し, *N* 個の音源信号が *M* 個のマイクロホンで観測される 状況を考える.多チャネルの音源信号,観測信号,及 び分離信号をそれぞれ次式で表す.

$$\mathbf{s}[l] = \begin{bmatrix} s_1[l], \cdots, s_n[l], \cdots s_N[l] \end{bmatrix}^{\mathrm{T}} \in \mathbb{R}^N \quad (1)$$

$$\boldsymbol{x}[l] = \begin{bmatrix} x_1[l], \cdots, x_m[l], \cdots x_M[l] \end{bmatrix}^{\mathrm{T}} \in \mathbb{R}^M \quad (2)$$

$$\boldsymbol{y}[l] = \begin{bmatrix} y_1[l], \cdots, y_n[l], \cdots, y_N[l] \end{bmatrix}^{\mathrm{T}} \in \mathbb{R}^N \quad (3)$$

ここで, $n = 1, 2, \dots, N$, $m = 1, 2, \dots, M$, 及び $l = 1, 2, \dots, L$ はそれぞれ音源, チャネル, 及び離散 時間のインデクスであり, ^{.T} は転置を表す.

信号 $\boldsymbol{z} = [\boldsymbol{z}[1], \cdots, \boldsymbol{z}[l], \cdots, \boldsymbol{z}[L]]^{\mathrm{T}} \in \mathbb{R}^{L}$ のSTFT を次式で表記する.

$$\boldsymbol{Z} = \mathrm{STFT}_{\boldsymbol{\omega}}(\boldsymbol{z}) \in \mathbb{C}^{I \times J}$$
(4)

ここで、 ω は解析時の窓関数を表す. 合成時の窓関数 を $\tilde{\omega}$ とおくとき、逆 STFT を ISTFT $_{\tilde{\omega}}(\cdot)$ と表記す る.本稿では、 $\omega \ge \tilde{\omega}$ のペアが次式の完全再構成条 件を満たすことを仮定する.

$$\boldsymbol{z} = \text{ISTFT}_{\widetilde{\boldsymbol{\omega}}}(\text{STFT}_{\boldsymbol{\omega}}(\boldsymbol{z})) \qquad \forall \boldsymbol{z} \in \mathbb{R}^L$$
 (5)

各チャネルに STFT を適用して得られる音源信号, 観測信号,及び分離信号のスペクトログラムの (*i*,*j*) 番目の要素をそれぞれ次式で表す.

$$\boldsymbol{s}_{ij} = \left[s_{ij1}, \cdots, s_{ijn}, \cdots s_{ijN}\right]^{\mathrm{T}} \qquad \in \mathbb{C}^{N} \qquad (6)$$

$$\boldsymbol{x}_{ij} = [x_{ij1}, \cdots, x_{ijm}, \cdots x_{ijM}]^{\mathrm{T}} \quad \in \mathbb{C}^{M} \quad (7)$$

$$\boldsymbol{y}_{ij} = [y_{ij1}, \cdots, y_{ijn}, \cdots y_{ijN}]^{\mathrm{T}} \qquad \in \mathbb{C}^{N} \qquad (8)$$

ここで, $i = 1, 2, \dots, I$ 及び $j = 1, 2, \dots, J$ はそれぞ れ周波数ビン及び時間フレームのインデクスを表す. また,式(8)の時間周波数行列を $Y_n \in \mathbb{C}^{I \times J}$ とする. 周波数領域 BSS は,次式の瞬時混合を仮定する.

$$\boldsymbol{x}_{ij} = \boldsymbol{A}_i \boldsymbol{s}_{ij} \tag{9}$$

ここで、 $A_i \in \mathbb{C}^{M \times N}$ は周波数毎の混合行列である. 優決定条件 BSS では M = N を仮定でき、BSS は A_i の逆行列を推定する問題となる.この逆行列を $W_i \approx A_i^{-1}$ とすると、分離信号は次式となる.

$$\boldsymbol{y}_{ij} = \boldsymbol{W}_i \boldsymbol{x}_{ij} \tag{10}$$

ここで、 $W_i = [w_{i1}, \cdots, w_{in}, \cdots, w_{iN}]^{\mathrm{H}} \in \mathbb{C}^{N \times M}$ は分離行列と呼ばれ、.^Hはエルミート転置を表す.

^{*} Experimental evaluation of consistent independent low-rank matrix analysis. By Daichi Kitamura (NIT Kagawa) and Kohei Yatabe (Waseda Univ.).

IVA や ILRMA 等の ICA に基づく BSS では,分離 信号に次式の任意性が存在する.

$$\hat{\boldsymbol{y}}_{ij} = \hat{\boldsymbol{W}}_i \boldsymbol{x}_{ij} \quad (\hat{\boldsymbol{W}}_i = \boldsymbol{D}_i \boldsymbol{P}_i \boldsymbol{W}_i) \quad (11)$$

ここで, $D_i \in \mathbb{C}^{N \times N}$ 及び $P_i \in \{0,1\}^{N \times N}$ はそれぞ れ任意の対角行列及びパーミュテーション行列であ る. 周波数毎のスケールの任意性については BP に よって解析的に復元できるが,周波数毎の分離信号の 順序の全周波数における整列($P_1 = P_2 = \cdots = P_I$ とする処理)はパーミュテーション問題と呼ばれる.

2.2 スペクトログラム無矛盾性

スペクトログラムは本来,文献 [22] の Fig. 1 のように,近傍の時間周波数成分が共起関係を持つ.スペクトログラム Z において,この共起関係が崩れている状態を矛盾と呼び,逆 STFT はその矛盾した成分を無矛盾な状態に復元する.即ち,Z の無矛盾性は

$$\mathcal{E}(\boldsymbol{Z}) = \boldsymbol{Z} - \mathrm{STFT}_{\boldsymbol{\omega}}(\mathrm{ISTFT}_{\widetilde{\boldsymbol{\omega}}}(\boldsymbol{Z}))$$
(12)

のノルム || $\mathcal{E}(\mathbf{Z})$ || によって特徴付けられ,それが0となるスペクトログラムを無矛盾と呼ぶ.

パーミュテーション問題が生じた分離信号のスペクトログラムは、文献 [22] の Fig. 2 のように隣接周波数 成分が不連続となるため、無矛盾性が大きく損なわれる. Consistent ILRMA [21, 22] では、ILRMA で仮定 されていた NMF に基づく低ランク時間周波数音源モ デルに加えて、分離信号 Y_n のスペクトログラム無矛盾 性を最適化の過程で常に担保する.即ち、最適化の毎 反復において、分離信号 Y_n をSTFT $_{\omega}(ISTFT_{\tilde{\omega}}(Y_n))$ に更新する.その結果、周波数毎の音源成分が隣接周 波数間で正しく整列された状態に誘導され、ILRMA よりも高精度にパーミュテーション問題を回避できる.

2.3 最適化アルゴリズム

Consistent ILRMA の最適化アルゴリズムは、従来 のILRMA における分離行列 W_i と NMF 音源モデル $T_n \in \mathbb{R}_{\geq 0}^{I \times K}$ 及び $V_n \in \mathbb{R}_{\geq 0}^{K \times J}$ の反復更新則に、分離 信号 Y_n が無矛盾となる更新及び BP を加えたものと なる.ここで、K は NMF の基底数を表す.この最適 化アルゴリズムを Algorithm 1 に示す¹.ここで、行 列間の演算子 \odot 及び分数はそれぞれ要素毎の積及び 商、行列に対する $|\cdot|$ 及びドット付き指数はそれぞれ 要素毎の絶対値及び指数乗、 $[\cdot]_{r,c}$ は行列の (r,c) 番目 の要素を表す.また、 $e_n \in \{0,1\}^N$ は n 番目の要素の み 1 の単位ベクトル、 m_{ref} は BP のためのリファレ ンスチャネルを表す. Algorithm 1 中の 3 行目が Y_n の無矛盾性を担保する更新、4 及び 5 行目が NMF 音 源モデルの更新、6-8 行目が IP に基づく分離行列の 更新、9-12 行目が m_{ref} 番目のチャネルへの BP を表 す.従来の ILRMA は 4-8 及び 11 行目のみであり、 BP は反復更新が収束した後に一度のみ適用される.

3 実験的評価

3.1 実験条件

前述のように、ILRMA における分離行列の推定に は周波数毎のスケールの任意性が生じる.この任意性 は式 (11) の D_i となって現れるため、パーミュテー ション問題を引き起こす P_i と同様に分離信号 Y_n のス ペクトログラム無矛盾性を崩す要因となる.この影響

Algorithm 1 Consistent ILRMA

 $\begin{array}{l} \hline \mathbf{Input:} \ \{x_{ij}\}_{i=1,j=1}^{I,J}, \mathsf{maxlter} \\ \mathbf{Output:} \ \{y_{ij}\}_{i=1,j=1}^{I,J} \\ 1: \ \mathrm{Initialize} \ \{T_n\}_{n=1}^N, \{V_n\}_{n=1}^N, \{W_i\}_{i=1}^I \end{array} \end{array}$ 2: for iter = $1, 2, \cdots$, maxIter do $\boldsymbol{Y}_n \leftarrow \mathrm{STFT}_{\boldsymbol{\omega}}(\mathrm{ISTFT}_{\widetilde{\boldsymbol{\omega}}}(\boldsymbol{Y}_n)) \ \forall n$ 3:
$$\begin{split} \mathbf{T}_{n} &\leftarrow \mathbf{T}_{n} \odot \left\{ \frac{\left[|\mathbf{Y}_{n}|^{\cdot 2} \odot (\mathbf{T}_{n} \mathbf{V}_{n})^{\cdot - 1} \mathbf{V}_{n}^{\mathrm{T}} \right] \mathbf{V}_{n}^{\mathrm{T}}}{(\mathbf{T}_{n} \mathbf{V}_{n})^{\cdot - 1} \mathbf{V}_{n}^{\mathrm{T}}} \right\}^{\cdot \frac{1}{2}} \quad \forall n \\ \mathbf{V}_{n} &\leftarrow \mathbf{V}_{n} \odot \left\{ \frac{\mathbf{T}_{n}^{\mathrm{T}} \left[|\mathbf{Y}_{n}|^{\cdot 2} \odot (\mathbf{T}_{n} \mathbf{V}_{n})^{\cdot - 2} \right]}{\mathbf{T}_{n}^{\mathrm{T}} (\mathbf{T}_{n} \mathbf{V}_{n})^{\cdot - 1}} \right\}^{\cdot \frac{1}{2}} \quad \forall n \\ \mathbf{U}_{in} &\leftarrow \frac{1}{J} \sum_{j} \frac{1}{\left[\mathbf{T}_{n} \mathbf{V}_{n} \right]_{i,j}} \mathbf{x}_{ij} \mathbf{x}_{ij}^{\mathrm{H}} \forall i, n \\ & = 1 \end{split}$$
5: 6: $\boldsymbol{w}_{in} \leftarrow (\boldsymbol{W}_i \boldsymbol{U}_{in})^{-1} \boldsymbol{e}_n \ \forall i, n$ 7:
$$\begin{split} \mathbf{w}_{in} \leftarrow \mathbf{w}_{in} \left(\mathbf{w}_{in}^{\mathrm{H}} U_{in} \mathbf{w}_{in} \right)^{-\frac{1}{2}} & \forall i, n \\ \lambda_{in} \leftarrow \left[\mathbf{W}_{i}^{-1} \right]_{m_{\mathrm{ref}}, n} & \forall i, n \\ \mathbf{w}_{in} \leftarrow \lambda_{in} \mathbf{w}_{in} & \forall i, n \\ y_{ijn} \leftarrow \mathbf{w}_{in}^{\mathrm{H}} \mathbf{x}_{ij} & \forall i, j, n \\ \end{split}$$
8: 9: 10: 11: $[\mathbf{T}_n]_{i,k} \leftarrow |\lambda_{in}|^2 [\mathbf{T}_n]_{i,k} \quad \forall i, k, n$ 12:13: end for

を避けるために, consistent ILRMA では毎反復の無 矛盾性を担保する処理の直前に BP を施してスケール を補正している.しかしながら, BP の有無で性能が どのように変化するかについては調査されていなかっ た.本稿では,毎反復の BP が consistent ILRMA の 分離性能に与える影響を実験的に評価する.

本実験は音楽信号の BSS のみを対象とし、インパ ルス応答による畳み込み混合信号と実録音混合信号 で評価する.比較手法には、AuxIVA (IVA)、毎反復 においてスペクトログラム無矛盾性を担保するが BP は適用しない AuxIVA (Consis. IVA w/o BP)及び BPを適用する AuxIVA (Consis. IVA w/ BP)、従 来のILRMA (ILRMA)、毎反復においてスペクトログ ラム無矛盾性を担保するが BP は適用しない ILRMA (Consist. ILRMA w/o BP)及び BPを適用する IL-RMA (Consist. ILRMA w/ BP)の計 6 手法を用い た.STFT における窓関数は Hann 窓を用いた.その 他の実験条件は文献 [22] を参照されたい.

3.2 インパルス応答による畳み込み混合の BSS

インパルス応答 E2A ($T_{60} = 300 \text{ ms}$)を用いて, 2 音源が混合した 2 チャネル観測信号を 10 曲分生 成した.音源やインパルス応答の詳細は文献 [22] に 記載の通りである.評価指標は総合的な分離尺度で ある source-to-distortion ratio (SDR) [24] の改善量 Δ SDR を用いた. 10 曲の観測信号のそれぞれに対し て,5種類の乱数で初期化した計 50 回試行の Δ SDR の箱ひげ図を Fig. 1 に示す.ここで,STFT における 窓長 (window len.) とシフト長及び窓長の比率 (shift len.) を変化させた際の結果をまとめて示している.

この結果を見ると、多くの実験条件においてスペクトログラム無矛盾性の担保が分離性能を向上させていることが確認できる.また、スペクトログラム無矛盾性を担保する直前に、BPを適用しスケール不定性を解消することで、より大きな性能改善が得られることが分かる. 例えば、窓長 512 ms かつシフト長 1/2の例では、consistent ILRMA は BP の有無によって中央値で4 dB 弱もの改善があり、BPを適用する効果の大きさがうかがえる.この理由として、分離信号 Y_n のスケール不定性 D_i の影響を解消したうえでス

 $^{^{1}}$ 文献 [21] に記載の Algorithm 1 は 4 行目と 5 行目が逆(W_i と T_n 及び V_n の更新順が逆)の誤りがある.

Fig. 1 SDR improvements for artificially mixed signals. The central lines of the box plots indicate the median, and the bottom and top edges of the box indicate the 25th and 75th percentiles, respectively.

ペクトログラム無矛盾性を担保する更新を行う方が, Y_n 中のパーミュテーション問題 P_i の解消により強 く作用することが考えられる.

3.3 実録音混合信号の BSS

残響時間 250 ms の環境で実際に録音された 2 音源 混合の 2 チャネル観測信号を 12 曲分用意した.音源 の詳細は文献 [22] に記載の通りである.また、 Δ SDR に加え、source-to-interference ratio (SIR) [24] の改 善量 Δ SIR 及び sources-to-artifact ratio (SAR) [24] も算出した.各曲に対して 5 種類の乱数で初期化し た計 60 回試行の箱ひげ図を Fig. 2 に示す.但し、本 実験では窓長を 512 ms、シフト長を 1/4 としている.

Fig. 2 より,実録音混合信号においても consistent ILRMA の優位性が確認できる.また,毎反復 の BP は ILRMA と IVA の両手法に対して有効であ り,特に IVA での性能改善(Consis. IVA w/o BP と Consis. IVA w/ BP の差)が顕著であった.SIR 及び SAR を見ると,毎反復の BP は SAR の性能改 善に大きく寄与している.SAR は BSS で生じる人工 歪みの少なさを表すことから,毎反復の BP でスケー ル不定性を解消した後にスペクトログラム無矛盾性 を担保するという処理の流れが,より歪みの少ない 分離信号 Y_n の推定に有効であることを示している.

4 おわりに

本稿では、consistent ILRMA において、毎反復で BPを適用する効果を実験的に評価した.実験結果よ り、consistent ILRMA における BP は分離性能の改 善に寄与していることが確認された.また、この事実 は ILRMA だけでなく IVA の分離実験でも確認され

Fig. 2 Evaluation scores for live-recorded mixture signals. The left, center, and right figures show SDR improvements, SIR improvements, and SAR values, respectively.

たことから,あらゆる周波数領域 BSS においてスペ クトログラム無矛盾性を担保する場合に BP を適用 することが望ましい可能性が示唆された.

謝辞 本研究の一部は JSPS 科研費 19K20306 及び 19H01116 の助成を受けたものである.

参考文献

- H. Sawada, N. Ono, H. Kameoka, D. Kitamura, and H. Saruwatari, "A review of blind source separation methods: Two converging routes to ILRMA originating from ICA and NMF," APSIPA Trans. Signal and Info. Process., vol. 8, no. e12, pp. 1–14, 2019.
- [2] P. Comon, "Independent component analysis, a new concept?," Signal Process., vol. 36, no. 3, pp. 287–314, 1994.
- [3] P. Smaragdis, "Blind separation of convolved mixtures in the frequency domain," *Neurocomputing*, vol. 22, pp. 21– 34, 1998.
- [4] N. Murata, S. Ikeda, and A. Ziehe, "An approach to blind source separation based on temporal structure of speech signals," *Neurocomputing*, vol. 41, no. 1–4, pp. 1–24, 2001.
- [5] H. Sawada, R. Mukai, S. Araki, and S. Makino, "A robust and precise method for solving the permutation problem of frequency-domain blind source separation," *IEEE Trans. SAP*, vol. 12, no. 5, pp. 530–538, Sep. 2004.
- [6] H. Saruwatari, T. Kawamura, T. Nishikawa, A. Lee, and K. Shikano, "Blind source separation based on a fastconvergence algorithm combining ICA and beamforming," *IEEE Trans. ASLP*, vol. 14, no. 2, pp. 666–678, 2006.
- [7] A. Hiroe, "Solution of permutation problem in frequency domain ICA using multivariate probability density functions," Proc. ICA, pp.601–608, 2006.
- [8] T. Kim, H. T. Attias, S.-Y. Lee, and T.-W. Lee, "Blind source separation exploiting higher-order frequency dependencies," *IEEE Trans. ASLP*, vol. 15, no. 1, pp. 70–79, 2007.
- [9] D. R. Hunter and K. Lange, "A tutorial on MM algorithms," *The American Statistician*, vol. 58, no. 1, pp. 30– 37, 2004.
- [10] N. Ono and S. Miyabe, "Auxiliary-function-based independent component analysis for super-Gaussian sources," *Proc. LVA/ICA*, pp. 165–172, 2010.
- [11] N. Ono, "Stable and fast update rules for independent vector analysis based on auxiliary function technique," Proc. WASPAA, pp. 189–192, 2011.

- [12] D. D. Lee and H. S. Seung, "Learning the parts of objects by non-negative matrix factorization," *Nature*, vol. 401, no. 6755, pp. 788–791, 1999.
- [13] D. Kitamura, N. Ono, H. Sawada, H. Kameoka, and H. Saruwatari, "Determined blind source separation unifying independent vector analysis and nonnegative matrix factorization," *IEEE/ACM Trans. ASLP*, vol. 24, no. 9, pp. 1626–1641, 2016.
- [14] D. Kitamura, N. Ono, H. Sawada, H. Kameoka, and H. Saruwatari, "Determined blind source separation with independent low-rank matrix analysis," in *Audio Source Separation*, S. Makino, Ed., pp. 125–155. Springer, Cham, 2018.
- [15] N. Makishima, S. Mogami, N. Takamune, D. Kitamura, H. Sumino, S. Takamichi, H. Saruwatari, and N. Ono, "Independent deeply learned matrix analysis for determined audio source separation," *IEEE/ACM Trans. ASLP*, vol. 27, no. 10, pp. 1601–1615, 2019.
- [16] K. Yatabe and D. Kitamura, "Determined blind source separation via proximal splitting algorithm," *Proc. ICASSP*, pp. 776–780, 2018.
- [17] K. Yatabe and D. Kitamura, "Time-frequency-maskingbased determined BSS with application to sparse IVA," *Proc. ICASSP*, pp. 715–719, 2019.
- [18] J. L. Roux, H. Kameoka, N. Ono, and S. Sagayama, "Fast signal reconstruction from magnitude STFT spectrogram based on spectrogram consistency," *Proc. DAFx*, 2010.
- [19] J. Le Roux and E. Vincent, "Consistent Wiener filtering for audio source separation," *IEEE Signal Process. Lett.*, vol. 20, no. 3, pp. 217–220, 2013.
- [20] K. Yatabe, "Consistent ICA: Determined BSS meets spectrogram consistency," *IEEE Signal Process. Lett.*, vol. 27, pp. 870–874, 2020.
- [21] 豊島直,北村大地,矢田部浩平,"スペクトログラム無矛盾性を 用いた独立低ランク行列分析,"日本音響学会 2020 年秋季研究 発表会講演論文集, pp. 291–294, 2020.
- [22] D. Kitamura and K. Yatabe, "Consistent independent lowrank matrix analysis for determined blind source separation," *EURASIP J. Adv. Signal Process.*, vol. 2020, no. 46, 35 pages, 2020.
- [23] K. Matsuoka and S. Nakashima, "Minimal distortion principle for blind source separation," Proc. ICA, pp. 722–727, 2001.
- [24] E. Vincent, R. Gribonval, and C. Févotte, "Performance measurement in blind audio source separation," *IEEE Trans. ASLP*, vol. 14, no. 4, pp. 1462–1469, 2006.